Ultrafast optical probing is a widely used method of underdense plasma diagnostic. In relativistic plasma, the motion blur limits spatial resolution in the direction of motion. For many high-power lasers the initial pulse duration of 30–50 fs results in a 10–15 μm motion blur, which can be reduced by probe pulse post-compression. Here we used the compression after compressor approach [Phys.-Usp. 62, 1096 (2019); JINST 17 P07035 (2022)], where spectral broadening is performed in thin optical plates and is followed by reflections from negative-dispersion mirrors. Our initially low-intensity probe beam was down-collimated for a more efficient spectral broadening and higher probe-to-self-emission intensity ratio. The setup is compact, fits in a vacuum chamber and can be implemented within a short experimental time slot. We proved that the compressed pulse retained the high quality necessary for plasma probing.