We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Most solid-to-solid phase transformations are much more interesting than just the growth of a small, homogeneous particle of the new phase. For reasons of both kinetics and thermodynamics, the new particles evolve in crystal structure, chemical composition, interface structures, defects, elastic energies, and shapes. Chapter 14 gives an overview of processes that occur during the nucleation and growth of a new phase from a parent phase. It covers essential features of precipitation in a solid, with a few traditional examples from steels, such as the pearlite transformation, and examples of precipitation sequences in aluminum alloys. Much of the content is central to physical metallurgy. The Kolmogorov-Johnson-Mehl-Avrami model of the rates of nucleation and growth transformations is presented. The late-stage coarsening process is also discussed in terms of the self-similarity of the microstructure.
Phase transformations often begin by nucleation, where a small but distinct volume of material forms with a structure and composition that differ from those of the parent phase. An unfavorable surface bounds the new phase, giving rise to a barrier that must be overcome before the fluctuation in structure and composition can become a stable, growing region of new phase. Chapter 4 develops the thermodynamics of forming a nucleus, with emphasis on the characteristic size and undercooling that are required. Homogeneous and heterogeneous nucleation are explained. The temperature dependence of nucleation is explained. The time dependence of nucleation is discussed in terms of the shape of the free energy barrier that must be crossed by a growing nucleus. There is some discussion of nucleation in multicomponent alloys.
Asymptotic Giant Branch (AGB) stars contribute a major part to the global dust budget in galaxies. Owing to their refractory nature alumina (stoichiometric formula AlO) is a promising candidate to be the first condensate emerging in the atmospheres of oxygen-rich AGB stars. Strong evidence for that is supplied by the presence of alumina in pristine meteorites and a broad spectral feature observed around ∼ 13 μm. The emergence of a specific condensate depends on the thermal stability of the solid, the gas density and its composition. The evaluation of the condensates is based on macroscopic bulk properties. The growth and size distribution of dust grains is commonly described by Classical Nucleation Theory (CNT). We question the applicability of CNT in an expanding circumstellar envelope as CNT presumes thermodynamic equilibrium and requires, in practise, seed nuclei on which material can condense. However, nano-sized molecular clusters differ significantly from bulk analogues. Quantum effects of the clusters lead to non-crystalline structures, whose characteristics (energy, geometry) differ substantially, compared to the bulk material. Hence, a kinetic quantum-chemical treatment involving various transition states describes dust nucleation most accurately. However, such a treatment is prohibitive for systems with more than 10 atoms. We discuss the viability of chemical-kinetic routes towards the formation of the monomer (Al2O3) and the dimer (Al4O6) of alumina.
A mineral, mimetite Pb5(AsO4)3Cl, is one of the most insoluble minerals and continues to be considered a viable remedial strategy for immobilization of Pb and As from contaminated soils. It has been recognized that many well-known, naturally-occurring, and synthetic chelators strongly influence dissolution processes in near-surface geological environments. In this study, crystals of mimetite were observed in scanning electron microscopy (SEM) and atomic force microscopy (AFM) before and after dissolution in EDTA (ethylene diamine tetra-acetic acid) solution. Direct in situ observations at room temperature made in an AFM fluid cell revealed that the grain surface roughness has increased due to development of etch pits. Both hexagonal and prismatic walls developed dissolution features between 0.6 and 1.2 µm, respectively, during duration of the experiment. AFM observations suggest surface-controlled dissolution dominated step retrieval on both prismatic and hexagonal surfaces. SEM observations showed the development of rounded edges on hexagonal walls and elongated, oval etch pits on the prismatic wall. These results, representing early dissolution patterns on mimetite surfaces, might suggest that low pH conditions in soils containing organic acids similar to EDTA might contribute to remobilization of Pb and As from mimetite when applied to stabilization of these toxic metals in contaminated soils.
A promising candidate to initiate dust formation in oxygen-rich AGB stars is alumina (Al2O3) showing an emission feature around ∼13μm attributed to Al−O stretching and bending modes (Posch+99,Sloan+03). The counterpart to alumina in carbon-rich AGB atmospheres is the highly refractory silicon carbide (SiC) showing a characteristic feature around 11.3μm (Treffers74). Alumina and SiC grains are thought to represent the first condensates to emerge in AGB stellar atmospheres. We follow a bottom-up approach, starting with the smallest stoichiometric clusters (i.e. Al4O6, Si2C2), successively building up larger-sized clusters. We present new results of quantum-mechanical structure calculations of (Al2O3)n, n = 1−10 and (SiC)n clusters with n = 1−16, including potential energies, rotational constants, and structure-specific vibrational spectra. We demonstrate the energetic viability of homogeneous nucleation scenarios where monomers (Al2O3 and SiC) or dimers (Al4O6 and Si2C2) are successively added. We find significant differences between our quantum theory based results and nanoparticle properties derived from (classical) nucleation theory.
Strain path changes during clock rolling cause more serious interaction between adjacent grains, resulting in the occurrence of interactive regions (IRs) with random orientations. Furthermore, plenty of new grains with relatively random orientations are introduced by the subsequent annealing of these IRs. The morphology of the IR and the origin of random orientations were therefore investigated in this study, and the electron backscatter diffraction technique was used to characterize crystallographic orientations of nuclei and deformed matrices. A short-time annealing was imposed on a specimen to catch the transient nucleation behaviors. The results indicate that the orientations of nuclei are similar to their surrounding deformed matrices, especially the points with larger local-misorientation. Additionally, the shape of new grains depends on where it forms, and it is suggested that this fact mainly results from the great difference in stored energies between deformed matrices with {111} and {100} orientations.
A detailed microstructural evaluation was executed on the crystallographic texture as well as the mechanisms for nucleation, phase transformation, and grain growth in a Al0.7CoCrFeNi high-entropy alloy. The microstructure and crystallographic orientations were characterized by electron backscatter diffraction, and the chemical composition variations by energy-dispersive X-ray spectroscopy. The cast Al0.7CoCrFeNi alloy started in the BCC phase and partially transformed into the FCC phase. It was found that the Pitsch orientation relationship (OR) dominates the nucleation mechanism of the FCC phase; however, deviations with respect to the Pitsch OR are observed and are attributed to the differently sized atoms forming an ordered B2 phase in the alloy causing lattice distortions. The dual phase BCC–FCC microstructure contains FCC Widmanstätten plates oriented parallel to the {110}BCC planes of the parent grain. It was found that the crystal orientation distribution after the BCC–FCC phase transformation is confined and is explained as a product of the governing mechanisms.
Bioavailability of arsenic in contaminated soils and wastes can be reduced to insignificant levels by precipitation of mimetite Pb5(AsO4)3Cl. The objective of this study is to elucidate mechanisms of the reaction between solution containing lead ions and arsenates adsorbed on synthetic goethite (AsO4-goethite), or arsenate ions in the solution and goethite saturated with adsorbed Pb (Pb-goethite). These reactions, in the presence of Cl, result in rapid crystallization of mimetite. Formation of mimetite is faster than desorption of AsO4 but slower than desorption of Pb from the goethite surface. Slow desorption of arsenates from AsO4-goethite results in heterogeneous precipitation and formation of mimetite incrustation on goethite crystals. Desorption of lead from Pb-goethite is at least as fast as diffusion and advection of AsO4 and Cl in suspension allowing for homogeneous crystallization of mimetite in intergranular solution. Therefore, the mechanism of nucleation is primarily driven by the kinetics of constituent supply to the saturation front, rather than by the thermodynamics of nucleation. The products of the reactions are well documented using microscopy methods such as scanning electron microscopy, electron backscattered diffraction, X-ray diffraction, and Fourier transform infrared spectroscopy.
Nucleation is much more important for clay minerals than for other authigenic cements as clay crystals are very small, so that a very large number of clay crystals must be nucleated. The role of this difficult kinetic step in the diagenesis of sandstones has not been considered adequately as a ratedetermining process. The relationship between pore-fluid supersaturation and the rate of nucleation of a mineral is very different from the relationship between supersaturation and the rate of crystal enlargement; thus the two processes will act at very different rates. A diagenetic model that predicts claymineral formation but omits the nucleation stage may make unreliable predictions. This may account partially for the discrepancy between numerical simulations of CO2 injection that predict high degrees of reaction between the CO2 and the host rock, and the results of studies of natural analogues that have much lower degrees of reaction.
The growth kinetics of gold nanoparticles (NPs) during the reduction of HAuBr4 by hydrazine in the reverse micelles of oxyethylated surfactant Tergitol NP 4 was studied in situ by UV–vis spectroscopy. Kinetic mechanism includes the steps of slow, continuous nucleation and fast, autocatalytic surface growth. Both steps are under kinetic control of the precursor reduction. The rate of nucleation is limited by reaction in the droplets of the aqueous phase forming the cores of reverse micelles, and growth rate is limited by the reaction on the surface of gold NPs growing inside the micelles. The chemical mechanism of reduction of halogenated forms of gold AuX4– by hydrazine is the same in the case of X = Cl, Br and includes the equilibria of formation and redox decomposition of the intermediate complexes AuIII(N2H4)X3 and AuI(N2H4)X. The initial form of AuX4– (X = Cl, Br) does not affect the size of the final NPs synthesized in micellar solution of oxyethylated surfactant.
Supersaturation-Nucleation-Time (S-N-T) diagrams are shown to be a useful tool to predict nucleation during reactive-transport processes in porous media. Such diagrams can be determined experimentally or estimated from theoretical calculations based on classical nucleation theory. With this aim, a ‘pragmatic’ understanding of the nucleation rate equation is adopted here and the meaning and magnitude of the interfacial tension and induction time discussed. Theoretical diagrams and experimental data are shown to match fairly well as long as there is an appropriate choice of the ‘relevant’ volume for induction-time calculations.
The origin of the condensation of water begins at the nanoscale, a length-scale that is challenging to probe for liquids. In this work we directly image heterogeneous nucleation of water nanodroplets by in situ transmission electron microscopy. Using gold nanoparticles bound to a flat surface as heterogeneous nucleation sites, we observe nucleation and growth of water nanodroplets. The growth of nanodroplet radii follows the power law: R(t)~(t−t0)β, where β~0.2−0.3.
Recent ex situ observations of crystallization in both natural and synthetic systems indicate that the classical models of nucleation and growth are inaccurate. However, in situ observations that can provide direct evidence for alternative models have been lacking due to the limited temporal and spatial resolution of experimental techniques that can observe dynamic processes in a bulk solution. Here we report results from liquid cell transmission electron microscopy studies of nucleation and growth of Au, CaCO3, and iron oxide nanoparticles. We show how these in situ data can be used to obtain direct evidence for the mechanisms underlying nanoparticle crystallization as well as dynamic information that provide constraints on important energetic parameters not available through ex situ methods.
High quality CdSe nanocrystals (NCs) were synthesized via a nonorganometallic precursor and extracted in different solvents. The difference in the influence of the nature of the solvent namely ethanol, N,N-dimethyl formamide (DMF), and acetonitrile on extraction of the same type of NCs was studied with respect to quality and stability of NCs. Characterization by x-ray diffraction technique, absorption–emission spectroscopy, scanning, transmission, and atomic force microscopy demonstrated the formation of NCs of good optical property and surface composition from the synthesis method used. Different polarities of the solvent strongly influence photoluminescence (PL), surface defects, concentrations of NCs extracted, particle sizes, and surface passivation. Ethanol extraction results in small-sized NCs and good particle size distribution. DMF extraction causes lesser interfacial defects and hence prevents radiative recombinations. PL quenching was observed in all the three solvents, and this necessitates further stabilization of NCs. The stability of the so-extracted NCs was evaluated for change in their properties with respect to aging. Aging substantiated the adverse effects of acetonitrile to extract the lesser surface passivated NCs leading to Ostwald ripening and island formation. The phase and structure of NCs remain unaffected with aging or by the nature of solvent used.
Isolated pioneer trees have been shown to increase the deposition of animal-dispersed seeds. The effect of gender on seed rain has not yet been investigated, and this study aimed to evaluate whether female and male plants of a pioneer dioecious zoochoric tree differ with respect to the seed rain under their canopies. Seed rain was evaluated for 13 mo, from October 2009 to October 2010, in secondary vegetation of the Atlantic forest in southern Brazil. We used 60 seed traps (0.5 m2): 40 traps under the crowns of 40 Myrsine coriacea (Primulaceae) trees (20 male and 20 female individuals) and 20 at sites without trees. We found 365071 diaspores belonging to 115 morphospecies from 37 families, and 38.3% of the morphospecies were trees, most of them zoochoric. The female trees accumulated a greater number of diaspores and species richness than male trees. The male trees accumulated a higher number of seeds and species than areas without trees. This study shows that sites containing female and male trees of M. coriacea and sites without trees differed significantly in terms of seed rain, and there is a gender effect in this dioecious, pioneer tree species because female plants promote an increase in the richness and abundance of diaspores.
Neolithic and Bronze Age settlements in Britain and Ireland have, on occasion, been referred to as being prehistoric villages but there is little agreement as to what a settlement from these periods should consist of for it to be confidently identified as such. A particular problem is that the development of villages in Britain and Ireland is commonly seen as being a medieval phenomenon and most discussions regarding the essential characteristics of villages are centred on medieval evidence. This paper examines which features of a prehistoric settlement can be used to determine if the use of the term ‘village’ is appropriate, ultimately finding the number of contemporary households to be the primary concern. Sites which have been identified specifically as being Neolithic or Bronze Age villages are critically reviewed, as are a selection of sites where the designation may be appropriate but where the term has so far been avoided. The number of sites from both periods that could justify being identified as being villages is found to be low, and in all cases it seems that moves toward larger nucleated settlements are geographically and chronologically restricted and are followed by a return to dispersed settlement patterns. This curious pattern of the rapid creation and decline of villages at a regional level is contrasted with different explanations for the development of nucleated settlements from other areas and during other time periods, which revolve around economic and agricultural intensification, the development of more hierarchical societies and the increase in structured trading networks. They do not fit well with either our current perceptions of Neolithic and Bronze Age societies, or with the strictly localised moves towards nucleation that were observed. New explanations with a more local focus are found to be required
The microstructural evolution of a cold drawn copper wire (reduction area of 38%) during primary recrystallization and grain growth was observed in situ by electron backscatter diffraction. Two thermal treatments were performed, and successive scans were acquired on samples undergoing heating from ambient temperature to a steady state of 200°C or 215°C. During a third in situ annealing, the temperature was continuously increased up to 600°C. Nuclei were observed to grow at the expense of the deformed microstructure. This growth was enhanced by the high stored energy difference between the nuclei and their neighbors (driving energy in recrystallization) and by the presence of high-angle grain boundaries of high mobility. In the early stages of growth, the nuclei twin and the newly created orientations continue to grow to the detriment of the strained copper. At high temperatures, the disappearance of some twins was evidenced by the migration of the incoherent twin boundaries. Thermal grooving of grain boundaries is observed at these high temperatures and affects the high mobile boundaries but tends to preserve the twin boundaries of lower energy. Thus, grooving may contribute to the twin vanishing.
Elucidation of protein structure using X-ray crystallography relies on the quality of the crystal. Crystals suffer from many different types of disorder, some of which occur during crystal nucleation and early crystal growth. To date, there are few studies surrounding the quality and nucleation of protein crystals partly due to difficulties surrounding viewing biological samples at high resolution. Recent research has led our current understanding of nucleation to be a two-step mechanism involving the formation of nuclei from dense liquid clusters; it is still unclear whether nuclei first start as amorphous aggregate or as crystalline lattices. Our research examines this mechanism through the use of electron microscopy. Using scanning electron microscopy imaging of the protein crystal growth process, a stacking, spiraling manner of growth is observed. The tops of the pyramid-like tetragonal protein crystal structures measure ~0.2 μm across and contain ~125,000 lysozyme units. This noncrystalline area experiences strain due to growth of the protein crystal. Our work shows that it is possible to view detailed early stage protein crystal growth using a wet scanning electron microscopy technique, thereby overcoming the problem of viewing liquids in a vacuum.
The maximum value at equilibrium of the relaxed enthalpy of some glasses is viewed as a
linear function of the annealing temperature from the Kauzmann temperature
TK up to a vitreous transition temperature
T*g
which is not time dependent. The frozen enthalpy and entropy at T*g are determined from the specific heat difference between glass and
undercooled melt which is constant between TK
and T*g. The Gibbs free energy change at T*g is equal to zero. The vitreous transition is a thermodynamic transition
without latent heat. A model is used to describe this phenomenon. A volume energy saving
εv equivalent to a complementary Laplace pressure has been
added to the classical Gibbs free energy change for a crystal formation in a melt. There
is a change of the Vogel–Fulcher–Tammann (VFT) temperature at T*g corresponding to a decrease of the free volume disappearance
temperature. Scaling laws linking the crystal homogeneous nucleation temperatures to T*g are used to predict the two VFT temperatures, the thermodynamic vitreous
transition induced by vitreous (super)-clusters and the frozen enthalpy and entropy at T*g only knowing T*g, the melting temperature Tm
and the fusion heat ΔHm of any fragile
glass-forming melt.
We construct interfacial solitary structures (spots) generated by a bistable chemical
reaction or a non-equilibrium phase transition in a surfactant film. The structures are
stabilized by Marangoni flow that prevents the spread of a state with a higher surface
tension when it is dynamically favorable. In a system without surfactant mass
conservation, a unique radius of a solitary spot exists within a certain range of values
of the Marangoni number and of the deviation of chemical potential from the Maxvell
construction, but multiple spots attract and coalesce. In a conservative system, there is
a range of stable spot sizes, but solitary spots may exist only in a limited parametric
range, beyond which multiple spots nucleate. Repeated coalescence and nucleation leads to
chaotic dynamics of spots observed computationally in Ref. [1].