We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Hawkes processes have been widely used in many areas, but their probability properties can be quite difficult. In this paper an elementary approach is presented to obtain moments of Hawkes processes and/or the intensity of a number of marked Hawkes processes, in which the detailed outline is given step by step; it works not only for all Markovian Hawkes processes but also for some non-Markovian Hawkes processes. The approach is simpler and more convenient than usual methods such as the Dynkin formula and martingale methods. The method is applied to one-dimensional Hawkes processes and other related processes such as Cox processes, dynamic contagion processes, inhomogeneous Poisson processes, and non-Markovian cases. Several results are obtained which may be useful in studying Hawkes processes and other counting processes. Our proposed method is an extension of the Dynkin formula, which is simple and easy to use.
We determine the order of magnitude of
$\mathbb{E}|\sum _{n\leqslant x}f(n)|^{2q}$
, where
$f(n)$
is a Steinhaus or Rademacher random multiplicative function, and
$0\leqslant q\leqslant 1$
. In the Steinhaus case, this is equivalent to determining the order of
$\lim _{T\rightarrow \infty }\frac{1}{T}\int _{0}^{T}|\sum _{n\leqslant x}n^{-it}|^{2q}\,dt$
.
In particular, we find that
$\mathbb{E}|\sum _{n\leqslant x}f(n)|\asymp \sqrt{x}/(\log \log x)^{1/4}$
. This proves a conjecture of Helson that one should have better than squareroot cancellation in the first moment and disproves counter-conjectures of various other authors. We deduce some consequences for the distribution and large deviations of
$\sum _{n\leqslant x}f(n)$
.
The proofs develop a connection between
$\mathbb{E}|\sum _{n\leqslant x}f(n)|^{2q}$
and the
$q$
th moment of a critical, approximately Gaussian, multiplicative chaos and then establish the required estimates for that. We include some general introductory discussion about critical multiplicative chaos to help readers unfamiliar with that area.
We derive moment identities for the stochastic integrals of multiparameter processes in a random-connection model based on a point process admitting a Papangelou intensity. The identities are written using sums over partitions, and they reduce to sums over non-flat partition diagrams if the multiparameter processes vanish on diagonals. As an application, we obtain general identities for the moments of k-hop counts in the random-connection model, which simplify the derivations available in the literature.
The interpretation of the ‘standard’ Palm version of a stationary random measure ξ is that it behaves like ξ conditioned on containing the origin in its mass. The interpretation of the ‘modified’ Palm version is that it behaves like ξ seen from a typical location in its mass. In this paper we shall focus on the modified Palm version, comparing it with the standard version in the transparent case of mixed biased coin tosses, and then establishing a limit theorem that motivates the above interpretation in the case of random measures on locally compact second countable Abelian groups possessing Følner averaging sets.
In this paper we consider a new type of urn scheme, where the selection probabilities are proportional to a weight function, which is linear but decreasing in the proportion of existing colours. We refer to it as the de-preferential urn scheme. We establish the almost-sure limit of the random configuration for any balanced replacement matrix R. In particular, we show that the limiting configuration is uniform on the set of colours if and only if R is a doubly stochastic matrix. We further establish the almost-sure limit of the vector of colour counts and prove central limit theorems for the random configuration as well as for the colour counts.
The continuum random cluster model is a Gibbs modification of the standard Boolean model with intensity z > 0 and law of radii Q. The formal unnormalised density is given by qNcc, where q is a fixed parameter and Ncc is the number of connected components in the random structure. We prove for a large class of parameters that percolation occurs for large enough z and does not occur for small enough z. We provide an application to the phase transition of the Widom–Rowlinson model with random radii. Our main tools are stochastic domination properties, a detailed study of the interaction of the model, and a Fortuin–Kasteleyn representation.
During the last decades, quite a number of interacting particle systems have been introduced and studied in the crossover area of mathematics and statistical physics. Some of these can be seen as simplistic models for opinion formation processes in groups of interacting people. In the model introduced by Deffuant et al. (2000), agents that are neighbors on a given network graph, randomly meet in pairs and approach a compromise if their current opinions do not differ by more than a given threshold value θ. We consider the two-sided infinite path ℤ as the underlying graph and extend existing models to a setting in which opinions are given by probability distributions. Similar to what has been shown for finite-dimensional opinions, we observe a dichotomy in the long-term behavior of the model, but only if the initial narrow mindedness of the agents is restricted.
We consider a weighted stationary spherical Boolean model in ℝd to which a Matérn-type thinning is applied. Assuming that the radii of the balls in the Boolean model have regularly varying tails, we establish the asymptotic behavior of the tail of the contact distribution of the thinned germ–grain model under four different thinning procedures of the original model.
We study a stochastic differential equation driven by a Poisson point process, which models the continuous change in a population's environment, as well as the stochastic fixation of beneficial mutations that might compensate for this change. The fixation probability of a given mutation increases as the phenotypic lag Xt between the population and the optimum grows larger, and successful mutations are assumed to fix instantaneously (leading to an adaptive jump). Our main result is that the process is transient (i.e. converges to -∞, so that continued adaptation is impossible) if the rate of environmental change v exceeds a parameter m, which can be interpreted as the rate of adaptation in case every beneficial mutation becomes fixed with probability 1. If v < m, the process is Harris recurrent and possesses a unique invariant probability measure, while in the limiting case m = v, Harris recurrence with an infinite invariant measure or transience depends upon additional technical conditions. We show how our results can be extended to a class of time varying rates of environmental change.
An urn contains black and red balls. Let Zn be the proportion of black balls at time n and 0≤L<U≤1 random barriers. At each time n, a ball bn is drawn. If bn is black and Zn-1<U, then bn is replaced together with a random number Bn of black balls. If bn is red and Zn-1>L, then bn is replaced together with a random number Rn of red balls. Otherwise, no additional balls are added, and bn alone is replaced. In this paper we assume that Rn=Bn. Then, under mild conditions, it is shown that Zn→a.s.Z for some random variable Z, and Dn≔√n(Zn-Z)→𝒩(0,σ2) conditionally almost surely (a.s.), where σ2 is a certain random variance. Almost sure conditional convergence means that ℙ(Dn∈⋅|𝒢n)→w 𝒩(0,σ2) a.s., where ℙ(Dn∈⋅|𝒢n) is a regular version of the conditional distribution of Dn given the past 𝒢n. Thus, in particular, one obtains Dn→𝒩(0,σ2) stably. It is also shown that L<Z<U a.s. and Z has nonatomic distribution.
We consider a variant of the randomly reinforced urn where more balls can be simultaneously drawn out and balls of different colors can be simultaneously added. More precisely, at each time-step, the conditional distribution of the number of extracted balls of a certain color, given the past, is assumed to be hypergeometric. We prove some central limit theorems in the sense of stable convergence and of almost sure conditional convergence, which are stronger than convergence in distribution. The proven results provide asymptotic confidence intervals for the limit proportion, whose distribution is generally unknown. Moreover, we also consider the case of more urns subjected to some random common factors.
In this paper we focus on a class of linear Hawkes processes with general immigrants. These are counting processes with shot-noise intensity, including self-excited and externally excited patterns. For such processes, we introduce the concept of the age pyramid which evolves according to immigration and births. The virtue of this approach that combines an intensity process definition and a branching representation is that the population age pyramid keeps track of all past events. This is used to compute new distribution properties for a class of Hawkes processes with general immigrants which generalize the popular exponential fertility function. The pathwise construction of the Hawkes process and its underlying population is also given.
We derive Laplace transform identities for the volume content of random stopping sets based on Poisson point processes. Our results are based on anticipating Girsanov identities for Poisson point processes under a cyclic vanishing condition for a finite difference gradient. This approach does not require classical assumptions based on set-indexed martingales and the (partial) ordering of index sets. The examples treated focus on stopping sets in finite volume, and include the random missed volume of Poisson convex hulls.
The infinite source Poisson arrival model with heavy-tailed workload distributions has attracted much attention, especially in the modeling of data packet traffic in communication networks. In particular, it is well known that under suitable assumptions on the source arrival rate, the centered and scaled cumulative workload input process for the underlying processing system can be approximated by fractional Brownian motion. In many applications one is interested in the stabilization of the work inflow to the system by modifying the net input rate, using an appropriate admission control policy. In this paper we study a natural family of admission control policies which keep the associated scaled cumulative workload input asymptotically close to a prespecified linear trajectory, uniformly over time. Under such admission control policies and with natural assumptions on arrival distributions, suitably scaled and centered cumulative workload input processes are shown to converge weakly in the path space to the solution of a d-dimensional stochastic differential equation driven by a Gaussian process. It is shown that the admission control policy achieves moment stabilization in that the second moment of the solution to the stochastic differential equation (averaged over the d-stations) is bounded uniformly for all times. In one special case of control policies, as time approaches ∞, we obtain a fractional version of a stationary Ornstein-Uhlenbeck process that is driven by fractional Brownian motion with Hurst parameter H > ½.
In this paper we consider the stationary Poisson Boolean model with spherical grains and propose a family of nonparametric estimators for the radius distribution. These estimators are based on observed distances and radii, weighted in an appropriate way. They are ratio unbiased and asymptotically consistent for a growing observation window. We show that the asymptotic variance exists and is given by a fairly explicit integral expression. Asymptotic normality is established under a suitable integrability assumption on the weight function. We also provide a short discussion of related estimators as well as a simulation study.
In this paper we propose a new modelling framework for electricity futures markets based on so-called ambit fields. The new model can capture many of the stylised facts observed in electricity futures and is highly analytically tractable. We discuss martingale conditions, option pricing, and change of measure within the new model class. Also, we study the corresponding model for the spot price, which is implied by the new futures model, and show that, under certain regularity conditions, the implied spot price can be represented in law as a volatility modulated Volterra process.
We construct a flow of continuous-time and discrete-state branching processes. Some scaling limit theorems for the flow are proved, which lead to the path-valued branching processes and nonlocal branching superprocesses, over the positive half line, studied in Li (2014).
The recently introduced two-parameter infinitely-many-neutral-alleles model extends the celebrated one-parameter version (which is related to Kingman's distribution) to diffusive two-parameter Poisson-Dirichlet frequencies. In this paper we investigate the dynamics driving the species heterogeneity underlying the two-parameter model. First we show that a suitable normalization of the number of species is driven by a critical continuous-state branching process with immigration. Secondly, we provide a finite-dimensional construction of the two-parameter model, obtained by means of a sequence of Feller diffusions of Wright-Fisher flavor which feature finitely many types and inhomogeneous mutation rates. Both results provide insight into the mathematical properties and biological interpretation of the two-parameter model, showing that it is structurally different from the one-parameter case in that the frequency dynamics are driven by state-dependent rather than constant quantities.
Our aim in this paper is to identify the limit behavior of the solutions of random degenerate equations of the form −div Aε(x′,∇Uε)+ρεω(x′)Uε=F with mixed boundary conditions on Ωε whenever ε→0, where Ωε is an N-dimensional thin domain with a small thickness h(ε), ρεω(x′)=ρω(x′/ε), where ρω is the realization of a random function ρ(ω) , and Aε(x′,ξ)=a(Tx′ /εω,ξ) , the map a(ω,ξ) being measurable in ω and satisfying degenerated structure conditions with weight ρ in ξ. As usual in dimension reduction problems, we focus on the rescaled equations and we prove that under the condition h(ε)/ε→0 , the sequence of solutions of them converges to a limit u0, where u0 is the solution of an (N−1) -dimensional limit problem with homogenized and auxiliary equations.
Let ξ be a random measure on a locally compact second countable topological group, and let X be a random element in a measurable space on which the group acts. In the compact case we give a natural definition of the concept that the origin is a typical location for X in the mass of ξ, and prove that when this holds, the same is true on sets placed uniformly at random around the origin. This new result motivates an extension of the concept of typicality to the locally compact case where it coincides with the concept of mass-stationarity. We describe recent developments in Palm theory where these ideas play a central role.