We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we introduce and study the Gorenstein relative homology theory for unbounded complexes of modules over arbitrary associative rings, which is defined using special Gorenstein flat precovers. We compare the Gorenstein relative homology to the Tate/unbounded homology and get some results that improve the known ones.
The symmetric group on a set acts transitively on the set of its subsets of a fixed size. We define homomorphisms between the corresponding permutation modules, defined over a field of characteristic two, which generalize the boundary maps from simplicial homology. The main results determine when these chain complexes are exact and when they are split exact. As a corollary we obtain a new explicit construction of the basic spin modules for the symmetric group.
In order to better unify the tilting theory and the Auslander–Reiten theory, Xi introduced a general transpose called the relative transpose. Originating from this, we introduce and study the cotranspose of modules with respect to a left A-module T called n-T-cotorsion-free modules. Also, we give many properties and characteristics of n-T-cotorsion-free modules under the help of semi-Wakamatsu-tilting modules AT.
Approximation sequences and derived equivalences occur frequently in the research of mutation of tilting objects in representation theory, algebraic geometry and noncommutative geometry. In this paper, we introduce symmetric approximation sequences in additive categories and weakly n-angulated categories which include (higher) Auslander-Reiten sequences (triangles) and mutation sequences in algebra and geometry, and show that such sequences always give rise to derived equivalences between the quotient rings of endomorphism rings of objects in the sequences modulo some ghost and coghost ideals.
For a finite quiver Q without sources, we consider the corresponding radical square zero algebra A. We construct an explicit compact generator for the homotopy category of acyclic complexes of projective A-modules. We call such a generator the projective Leavitt complex of Q. This terminology is justified by the following result: the opposite differential graded endomorphism algebra of the projective Leavitt complex of Q is quasi-isomorphic to the Leavitt path algebra of Qop. Here, Qop is the opposite quiver of Q, and the Leavitt path algebra of Qop is naturally ${\open Z}$-graded and viewed as a differential graded algebra with trivial differential.
We define the projective stable category of a coherent scheme. It is the homotopy category of an abelian model structure on the category of unbounded chain complexes of quasi-coherent sheaves. We study the cofibrant objects of this model structure, which are certain complexes of flat quasi-coherent sheaves satisfying a special acyclicity condition.
In this article, we extend the notion of FP-injective modules to that of Cartan–Eilenberg complexes. We show that a complex $C$ is Cartan–Eilenberg FP-injective if and only if $C$ and $\text{Z}(C)$ are complexes consisting of FP-injective modules over right coherent rings. As an application, coherent rings are characterized in various ways, using Cartan–Eilenberg FP-injective and Cartan–Eilenberg flat complexes.
In this paper we demonstrate that non-commutative localizations of arbitrary additive categories (generalizing those defined by Cohn in the setting of rings) are closely (and naturally) related to weight structures. Localizing an arbitrary triangulated category $\text{}\underline{C}$ by a set $S$ of morphisms in the heart $\text{}\underline{Hw}$ of a weight structure $w$ on it one obtains a triangulated category endowed with a weight structure $w^{\prime }$. The heart of $w^{\prime }$ is a certain version of the Karoubi envelope of the non-commutative localization $\text{}\underline{Hw}[S^{-1}]_{\mathit{add}}$ (of $\text{}\underline{Hw}$ by $S$). The functor $\text{}\underline{Hw}\rightarrow \text{}\underline{Hw}[S^{-1}]_{\mathit{add}}$ is the natural categorical version of Cohn’s localization of a ring, i.e., it is universal among additive functors that make all elements of $S$ invertible. For any additive category $\text{}\underline{A}$, taking $\text{}\underline{C}=K^{b}(\text{}\underline{A})$ we obtain a very efficient tool for computing $\text{}\underline{A}[S^{-1}]_{\mathit{add}}$; using it, we generalize the calculations of Gerasimov and Malcolmson (made for rings only). We also prove that $\text{}\underline{A}[S^{-1}]_{\mathit{add}}$ coincides with the ‘abstract’ localization $\text{}\underline{A}[S^{-1}]$ (as constructed by Gabriel and Zisman) if $S$ contains all identity morphisms of $\text{}\underline{A}$ and is closed with respect to direct sums. We apply our results to certain categories of birational motives $DM_{gm}^{o}(U)$ (generalizing those defined by Kahn and Sujatha). We define $DM_{gm}^{o}(U)$ for an arbitrary $U$ as a certain localization of $K^{b}(Cor(U))$ and obtain a weight structure for it. When $U$ is the spectrum of a perfect field, the weight structure obtained this way is compatible with the corresponding Chow and Gersten weight structures defined by the first author in previous papers. For a general $U$ the result is completely new. The existence of the corresponding adjacent$t$-structure is also a new result over a general base scheme; its heart is a certain category of birational sheaves with transfers over $U$.
Let R be an arbitrary ring. We introduce and study a generalization of injective and flat complexes of modules, called weak injective and weak flat complexes of modules respectively. We show that a complex C is weak injective (resp. weak flat) if and only if C is exact and all cycles of C are weak injective (resp. weak flat) as R-modules. In addition, we discuss the weak injective and weak flat dimensions of complexes of modules. Finally, we show that the category of weak injective (resp. weak flat) complexes is closed under pure subcomplexes, pure epimorphic images and direct limits. As a result, we then determine the existence of weak injective (resp. weak flat) covers and preenvelopes of complexes.
Let $R$ be a commutative ring. In this paper we study the behavior of Gorenstein homological dimensions of a homologically bounded $R$-complex under special base changes to the rings $R_{x}$ and $R/xR$, where $x$ is a regular element in $R$. Our main results refine some known formulae for the classical homological dimensions. In particular, we provide the Gorenstein counterpart of a criterion for projectivity of finitely generated modules, due to Vasconcelos.
In this paper we prove a version of curved Koszul duality for $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\mathbb{Z}/2\mathbb{Z}$-graded curved coalgebras and their cobar differential graded algebras. A curved version of the homological perturbation lemma is also obtained as a useful technical tool for studying curved (co)algebras and precomplexes. The results of Koszul duality can be applied to study the category of matrix factorizations $\mathsf{MF}(R,W)$. We show how Dyckerhoff’s generating results fit into the framework of curved Koszul duality theory. This enables us to clarify the relationship between the Borel–Moore Hochschild homology of curved (co)algebras and the ordinary Hochschild homology of the category $\mathsf{MF}(R,W)$. Similar results are also obtained in the orbifold case and in the graded case.
A famous theorem of D. Orlov describes the derived bounded category of coherent sheaves on projective hypersurfaces in terms of an algebraic construction called graded matrix factorizations. In this article, I implement a proposal of E. Segal to prove Orlov’s theorem in the Calabi–Yau setting using a globalization of the category of graded matrix factorizations (graded D-branes). Let X⊂ℙ be a projective hypersurface. Segal has already established an equivalence between Orlov’s category of graded matrix factorizations and the category of graded D-branes on the canonical bundle Kℙ to ℙ. To complete the picture, I give an equivalence between the homotopy category of graded D-branes on Kℙ and Dbcoh(X). This can be achieved directly, as well as by deforming Kℙ to the normal bundle of X⊂Kℙ and invoking a global version of Knörrer periodicity. We also discuss an equivalence between graded D-branes on a general smooth quasiprojective variety and on the formal neighborhood of the singular locus of the zero fiber of the potential.
We show that if the given cotorsion pair in the category of modules is complete and hereditary, then both of the induced cotorsion pairs in the category of complexes are complete. We also give a cofibrantly generated model structure that can be regarded as a generalization of the projective model structure.
We study the existence of some covers and envelopes in the chain complex category of R-modules. Let (𝒜,ℬ) be a cotorsion pair in R-Mod and let ℰ𝒜 stand for the class of all exact complexes with each term in 𝒜. We prove that (ℰ𝒜,ℰ𝒜⊥) is a perfect cotorsion pair whenever 𝒜 is closed under pure submodules, cokernels of pure monomorphisms and direct limits and so every complex has an ℰ𝒜-cover. As an application we show that every complex of R-modules over a right coherent ring R has an exact Gorenstein flat cover. In addition, the existence of -covers and -envelopes of special complexes is considered where and denote the classes of all complexes with each term in 𝒜 and ℬ, respectively.
In a paper from 2002, Hovey introduced the Gorenstein projective and Gorenstein injective model structures on R-Mod, the category of R-modules, where R is any Gorenstein ring. These two model structures are Quillen equivalent and in fact there is a third equivalent structure we introduce: the Gorenstein flat model structure. The homotopy category with respect to each of these is called the stable module category of R. If such a ring R has finite global dimension, the graded ring R[x]/(x2) is Gorenstein and the three associated Gorenstein model structures on R[x]/(x2)-Mod, the category of graded R[x]/(x2)-modules, are nothing more than the usual projective, injective and flat model structures on Ch(R), the category of chain complexes of R-modules. Although these correspondences only recover these model structures on Ch(R) when R has finite global dimension, we can set R = ℤ and use general techniques from model category theory to lift the projective model structure from Ch(ℤ) to Ch(R) for an arbitrary ring R. This shows that homological algebra is a special case of Gorenstein homological algebra. Moreover, this method of constructing and lifting model structures carries through when ℤ[x]/(x2) is replaced by many other graded Gorenstein rings (or Hopf algebras, which lead to monoidal model structures). This gives us a natural way to generalize both chain complexes over a ring R and the derived category of R and we give some examples of such generalizations.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.