The mesoporous and nanorods SnO2 are synthesized by controlling the state of SnCl2·2H2O precursor with SBA-15 as hard template, and the possible formation mechanisms at different assembling modes inside the ordered mesoporous silica templates are proposed. In addition, SnO2 nanoparticles are synthesized by hydrolysis depositing method. The electrochemical tests of as-prepared samples indicate that the reticular stacking structure of the nanorods would limit the Li+ ions to intercalate, but the effect of volume expansion in this case upon cycling is insignificant. The mesostructure SnO2 tends to be stable after partial structural collapse at first few cycles. And the Li+ ions can readily intercalate and de-intercalate into/from its ordered channels structure, which provides a high capacity and an improved cycle property. Although SnO2 nanoparticles deliver high capacity at an early stage, the agglomeration may induce the capacity to drop rapidly after a certain number of cycles.