We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To address the shortcomings of existing methods for rotorcraft searching, positioning, tracking and landing on a ship at sea, a dual-channel LIDAR searching, positioning, tracking and landing system (DCLSPTLS) is proposed in this paper, which utilises the multi-pulse laser echoes accumulation method and the physical phenomenon that the laser reflectivity of the ship deck in the near-infrared band is four orders of magnitude higher than that of the sea surface. The DCLSPTLS searching and positioning model, tracking model and landing model are established, respectively. The searching and positioning model can provide estimates of the azimuth angle, the distance of the ship relative to the rotorcraft and the ship's course. With the above parameters as inputs, the total tracking time and the direction of the rotorcraft tracking speed can be obtained by using the tracking model. The landing model can calculate the pitch and the roll angles of the ship's deck relative to the rotorcraft by using the least squares method and the laser irradiation coordinates. The simulation shows that the DCLSPTLS can realise the functions of rotorcraft searching, positioning, tracking and landing by using the above parameters. To verify the effectiveness of the DCLSPTLS, a functional test is performed using a rotorcraft and a model ship on a lake. The test results are consistent with the results of the simulation.
Most medical diagnostic tests are expensive, involve slow turnaround times from centralized laboratories and require highly specialized equipment with seasoned technicians to carry out the assay. To facilitate realization of precision medicine at the point of care, we have developed a mixed-scale nanosensor chip featuring high surface area pillar arrays where solid-phase reactions can be performed to detect and identify nucleic acid targets found in diseased patients. Products formed can be identified and detected using a polymer nanofluidic channel. To guide delivery of this platform, we discuss the operation of various components of the device and simulations (COMSOL) used to guide the design by investigating parameters such as pillar array loading, and hydrodynamic and electrokinetic flows. The fabrication of the nanosensor is discussed, which was performed using a silicon (Si) master patterned with a combination of focused ion beam milling and photolithography with deep reactive ion etching. The mixed-scale patterns were transferred into a thermoplastic via thermal nanoimprint lithography, which facilitated fabrication of the nanosensor chip making it appropriate for in vitro diagnostics. The results from COMSOL were experimentally verified for hydrodynamic flow using Rhodamine B as a fluorescent tracer and electrokinetic flow using single fluorescently labelled oligonucleotides (single-stranded DNAs, ssDNAs).
Republican Shanghai was a renowned art capital. This article is based on a large-scale digital mapping project of the residential locations of 1,349 Shanghai artists. We analysed the transformative spatial distribution patterns of artists in relation to the city's social and urban conditions, and developed an artists’ habitation approach to elucidating the issues of Republican-period Shanghai urban and art history from the perspective of Chinese cosmopolitanism. We mapped areas of high artist concentration and identified a higher percentage of artists residing in the concessions (compared with the Shanghai general population) and the incremental convergence of art clusters in the concessions. We argue that the concessions provided a favourable environment for cultural diversity and the ungovernable, elite spirit of the literati tradition. The mainstream Shanghai art practices, known as haipai, were modern, as they were rooted in the urban modernity of the concessions and embodied Chinese cosmopolitanism.
How do non-governmental organizations (NGOs) advocate public policies? What impacts their advocacy strategies? Although scholars have addressed these questions in a democratic context, less is known about NGO advocacy under powerful authoritarian regimes. Using China as a case study, we develop an institutional explanation of NGOs’ policy advocacy patterns and explore the impacts of NGO autonomy. Using a unique dataset of registered NGOs in three Chinese provinces, we find that NGOs with more autonomy tend to conduct direct negotiations with the government more actively (more political advocacy). However, these more autonomous NGOs are likely to be more hesitant to mobilize society from the bottom up (less social advocacy). These findings enrich our knowledge of social actors’ roles in the policymaking process in China.
Lower-crust-derived adakitic rocks in the Gangdese belt provide important constraints on the timing of Tibetan crustal thickening and on the relative contributions of magmatic and tectonic processes. Here we present geochronological and geochemical data for the Wangdui porphyritic monzogranites in the western Gangdese belt. Zircon U–Pb dating yields emplacement ages of 46–44 Ma. All samples have high Sr (321–599 ppm), low Yb (0.76–1.33 ppm) and Y (10.6–18.3 ppm) contents, with high La/Yb (51.1–72.3) and Sr/Y (21.0–51.4) ratios, indicating adakitic affinities. The low MgO (0.97–1.76 wt %), Cr (7.49–53.6 ppm) and Ni (4.75–29.1 ppm) contents, as well as high 87Sr/86Sr(i) (0.7143–0.7145), low ϵNd(t) (−10.4 to −9.8) and zircon ϵHf(t) (−17.7 to 0.4) values, suggest that the Wangdui pluton most likely originated from partial melting of the thickened ancient lower crust. In combination with previously published data, despite the east–west-trending heterogeneity of crustal composition in the Gangdese belt, the La/Yb ratios of magmatic rocks reveal that both western and eastern segments experienced remarkable crustal thickening in the Eocene. However, in contrast to the thickened juvenile lower crust in the eastern segment formed by the underplating of mantle-derived magmas, tectonic shortening plays a more crucial role in thickening of the ancient basement in western Gangdese. In fact, such Eocene-thickened ancient lower-crust-derived adakitic rocks are widely distributed in the central Himalayan–Tibetan orogen. This, together with the extensive development of fold–thrust belts, suggests that tectonic shortening might be the main mechanism accounting for the crustal thickening associated with the India–Asia collision.
The extinct family Hylicellidae, as the ancestral group of modern cicadomorphans, had a wide distribution and a very high species-level biodiversity from the Triassic to Early Cretaceous. We herein report 11 new hylicellid specimens from the Jurassic Daohugou beds of Inner Mongolia, NE China, and execute geometric morphometric analysis (GMA) to elucidate their systematic position. Our GMA and subsequent morphometric statistics indicate that 10 of our new specimens can be compared to the holotype of Cycloscytina gobiensis, and one is new to science. Cycloscytina incompleta new species is erected based on this specimen, with the following discriminatory tegminal traits: C3 almost as long as and slightly narrower than C2, and the forking position of stem M distinctly migrates towards wing apex and much apicad of the stem CuA bifurcating. Additionally, Cycloscytina plachutai is herein transferred to the procercopid genus Procercopina, resulting in P. plachutai new combination. To date, just a few body structures of Hylicellidae have been revealed, and the new whole-bodied hylicellids reported herein provide some novel insights on the evolution of basal Clypeata. This study also emphasizes the use of morphometric analysis in the systematics of wing-bearing insects such as hylicellids.
Pneumatic muscle actuator (PMA) similar to biological muscle is a new type of pneumatic actuator. The flexible manipulator based on PMAs was constructed to simulate the actual movement of the human upper arm. Considering the model errors and external disturbances, the fuzzing sliding mode control based on the saturation function was proposed. Compared with other fuzzy control methods, fuzzy control and saturation function are used to adjust the robust terms to improve the tracking accuracy and reduce the high-frequency chattering.
Nosema bombycis is a destructive and specific intracellular parasite of silkworm, which is extremely harmful to the silkworm industry. N. bombycis is considered as a quarantine pathogen of sericulture because of its long incubation period and horizontal and vertical transmission. Herein, two single-chain antibodies targeting N. bombycis hexokinase (NbHK) were cloned and expressed in fusion with the N-terminal of Slmb (a Drosophila melanogaster FBP), which contains the F-box domain. Western blotting demonstrated that Sf9-III cells expressed NSlmb–scFv-7A and NSlmb–scFv-6H, which recognized native NbHK. Subsequently, the NbHK was degraded by host ubiquitination system. When challenged with N. bombycis, the transfected Sf9-III cells exhibited better resistance relative to the controls, demonstrating that NbHK is a prospective target for parasite controls and this approach represents a potential solution for constructing N. bombycis-resistant Bombyx mori.
Maternal overnutrition-induced fetal programming predisposes offspring to cardiovascular health issues throughout life. Understanding how these adverse cardiovascular effects are regulated at the maternal–fetal crosstalk will provide insight into the mechanisms of these cardiovascular diseases, which will help in further identifying potential targets for intervention. Here, we uncover a role of oxidative stress caused by prenatal overnutrition in governing cardiac damage. Mice exposed to maternal obesity showed remarkable pathological cardiomyocyte hypertrophy (pmale < 0.001, Cohen’s dmale = 1.77; pfemale < 0.001, Cohen’s dfemale = 1.94), increased collagen content (pmale < 0.001, Cohen’s dmale = 2.13; pfemale < 0.001, Cohen’s dfemale = 2.71), and increased levels of transforming growth factor β (TGF-β) (pmale < 0.001, Cohen’s dmale = 3.02; pfemale < 0.001, Cohen’s dfemale = 4.52), as well as left ventricular dysfunction in adulthood. To cope with increased oxidative stress in the myocardial tissue of offspring from obese mothers, we sought to decrease the effect of oxidative stress and prevent the development of these cardiovascular conditions with use of the antioxidant N-acetylcysteine during pregnancy. As predicted, after treatment with the antioxidant, there was greatly mitigated cardiomyocyte hypertrophy (pmale < 0.001, Cohen’s dmale = 1.31; pfemale < 0.001, Cohen’s dfemale = 0.82) and cardiac fibrosis, including decreased composition of collagen fibers (pmale < 0.01, Cohen’s dmale = 1.45; pfemale < 0.05, Cohen’s dfemale = 1.23) and reduced levels of TGF-β (pmale < 0.05, Cohen’s dmale = 1.83; pfemale < 0.01, Cohen’s dfemale = 3.81). We also observed improved left ventricle contractile function together with the alleviation of enhanced oxidative stress in the myocardial tissue of offspring. Collectively, these results established a crucial role of oxidative stress in prenatal overnutrition-associated ventricular remodeling and cardiac dysfunction. Our findings provided an important target for intervention of cardiovascular disease in overnutrition-related fetal programming.
Electromagnetic simulation software has become an important tool for antenna design. However, high-fidelity simulation of wideband or ultra-wideband antennas is very expensive. Therefore, antenna optimization design by using an electromagnetic solver may be limited due to its high computational cost. This problem can be alleviated by the utilization of fast and accurate surrogate models. Unfortunately, conventional surrogate models for antenna design are usually prohibitive because training data acquisition is time-consuming. In order to solve the problem, a modeling method named progressive Gaussian process (PGP) is proposed in this study. Specially, when a Gaussian process (GP) is trained, test sample with the largest predictive variance is inputted into an electromagnetic solver to simulate its results. After that, the test sample is added to the training set to train the GP progressively. The process can incrementally increase some important trusted training data and improve the model generalization performance. Based on the proposed PGP, two monopole antennas are optimized. The optimization results show effectiveness and efficiency of the method.
Prospective cohort studies linking organ meat consumption and nonalcoholic fatty liver disease (NAFLD) are limited, especially in Asian populations. This study aimed to prospectively investigate the association between organ meat consumption and risk of NAFLD in a general Chinese adult population. This prospective cohort study included a total of 15,568 adults who were free of liver disease, cardiovascular disease, and cancer at baseline. Dietary information was collected at baseline using a validated food frequency questionnaire. NAFLD was diagnosed by abdominal ultrasound after excluding other causes related to chronic liver disease. Cox proportional regression models were used to assess the association between organ meat consumption and risk of NAFLD. During a median of 4.2 years of follow-up, we identified 3,604 incident NAFLD cases. After adjusting for demographic characteristics, lifestyle factors, vegetable, fruit, soft drink, seafood, and red meat consumption, the multivariable hazard ratios (95% confidence intervals) for incident NAFLD across consumption of organ meat were 1.00 (reference) for almost never, 1.04 (0.94, 1.15) for tertile 1, 1.08 (0.99, 1.19) for tertile 2, and 1.11 (1.01, 1.22) for tertile 3, respectively (P for trend <0.05). Such association did not differ substantially in the sensitivity analysis. Our study indicates that organ meat consumption was related to a modestly higher risk of NAFLD among Chinese adults. Further investigations are needed to confirm this finding.
Although multiple global navigation satellite systems (multi-GNSS) with more visible satellites have a high success rate, they make positioning time-consuming. Partial ambiguity resolution (PAR) can improve the efficiency of multi-GNSS; however, at present PAR cannot simultaneously achieve fast and high-precision positioning with a high success rate. Therefore, PAR based on ambiguity dilution of precision- and convex-hull-based satellite selection is proposed. The experimental results of the proposed PAR, its corresponding satellite selection algorithm, the classical PAR, and the low-cutoff-elevation-angle-based multi-GNSS show that the proposed PAR outperforms the classical PAR, i.e., it achieves fast and high-precision positioning with a success rate of 100⋅0%. Furthermore, in terms of R-ratio-test-based ambiguity validation, it improves the reliability of carrier-phase-based integrity monitoring of multi-GNSS and the corresponding satellite selection algorithms. In addition, its positioning accuracy is close to that of multi-GNSS and higher than that of the classical PAR, with maximum differences of 0⋅3 and 2⋅4 cm, respectively. The proposed single (dual) frequency-based PAR improves single/dual-frequency multi-GNSS efficiency by more than 54⋅9%/80⋅4% (42⋅0%/75⋅8%) when 14⋅4 (13⋅2) out of 24⋅4 satellites are selected.
We aimed to investigate the coronavirus disease 2019 (COVID-19)-related knowledge and practices of cancer patients and to assess their anxiety- and depression-related to COVID-19 during the early surge phase of the pandemic.
Methods:
An online questionnaire survey of cancer patients was conducted from February 10-29, 2020. Knowledge and practices related to COVID-19 were assessed using a custom-made questionnaire. The Hospital Anxiety and Depression Scale was used to assess the presence of anxiety and depression, with scores beyond 7 indicating anxiety or depressive disorder. Univariate and multiple linear regression analyses were used to identify the high-risk groups according to the level of knowledge, practices, anxiety, and depression scores.
Results:
A total of 341 patients were included. The rate of lower level of knowledge and practices was 49.9% and 18.8%, respectively. Education level of junior high school degree or lower showed a significant association with lower knowledge score (β: −3.503; P < 0.001) and lower practices score (β: −2.210; P < 0.001) compared to the education level of college degree and above. The prevalence of anxiety and depression among the respondents was 17.6% and 23.2%, respectively. A higher depression score was associated with older age, marital status of the widowed, and lower level of education, knowledge score, and practices score (P < 0.05).
Conclusions:
Targeted COVID-19-related education interventions are required for cancer patients with a lower level of knowledge to help improve their practices. Interventions are also required to address the anxiety and depression of cancer patients.
T long-term effects of cognitive therapy and behavior therapy (CTBT) for menopausal symptoms are unknown, and whether the effects are different between natural menopause and treatment-induced menopause are currently unclear. Therefore, we sought to conduct an accurate estimate of the efficacy of CTBT for menopausal symptoms.
Methods
We conducted searches of Cochrane Library, EMBASE, PsycINFO, PubMed, and Web of Science databases for studies from 1 January 1977 to 1 November 2021. Randomized controlled trials (RCTs) comparing intervention groups to control groups for menopausal symptoms were included. Hedge's g was used as the standardized between-group effect size with a random-effects model.
Results
We included 14 RCTs comprising 1618 patients with a mean sample size of 116. CTBT significantly outperformed control groups in terms of reducing hot flushes [g = 0.39, 95% confidence interval (CI) 0.23–0.55, I2 = 45], night sweats, depression (g = 0.50, 95% CI 0.34–0.66, I2 = 51), anxiety (g = 0.38, 95% CI 0.23–0.54, I2 = 49), fatigue, and quality of life. Egger's test indicated no publication bias.
Conclusions
CTBT is an effective psychological treatment for menopausal symptoms, with predominantly small to moderate effects. The efficacy is sustained long-term, although it declines somewhat over time. The efficacy was stronger for natural menopause symptoms, such as vasomotor symptoms, than for treatment-induced menopause symptoms. These findings provide support for treatment guidelines recommending CTBT as a treatment option for menopausal symptoms.
The optimization of laser pulse shapes is of great importance and a major challenge for laser direct-drive implosions. In this paper, we propose an efficient intelligent method to perform laser pulse optimization via hydrodynamic simulations guided by the genetic algorithm and random forest algorithm. Compared to manual optimizations, the machine-learning guided method is able to efficiently improve the areal density by a factor of 63% and reduce the in-flight-aspect ratio by a factor of 30% at the same time. A relationship between the maximum areal density and ion temperature is also achieved by the analysis of the big simulation dataset. This design method has been successfully demonstrated by the 2021 summer double-cone ignition experiments conducted at the SG-II upgrade laser facility and has great prospects for the design of other inertial fusion experiments.
Previous research has indicated that attention-deficit/hyperactivity disorder (ADHD) is associated with an increased risk for dementia, but studies are scarce and inconclusive. We aimed to investigate the association between ADHD, and dementia and mild cognitive impairment (MCI). Additionally, we aimed to investigate the impact of comorbid conditions, educational attainment, head injuries, other developmental disorders, and sex on the association.
Methods
The study population consisted of 3,591,689 individuals born between 1932 and 1963, identified from Swedish population-based registers. Cases of ADHD, dementia and MCI were defined according to ICD diagnostic codes and ATC codes for medication prescriptions. A Cox proportional hazards model was used to test the associations between ADHD, and dementia and MCI.
Results
Individuals with ADHD had an increased risk for dementia and MCI. After adjusting for sex and birth year, a hazard ratio (HR) was 2.92 (95% confidence interval 2.40–3.57) for dementia, and 6.21 (5.25–7.35) for MCI. Additional adjustment for psychiatric disorders (depression, anxiety, substance use disorder, and bipolar disorder) substantially attenuated the associations, HR = 1.62 (1.32–1.98) for dementia, and 2.54 (2.14–3.01) for MCI. Common metabolic disorders (hypertension, type 2 diabetes, and obesity), sleep disorders, head injuries, educational attainment, and other developmental disorders, had a limited impact on the association. The association between ADHD and dementia was stronger in men.
Conclusions
ADHD is a potential risk factor for dementia and MCI, although the risk significantly attenuates after controlling for psychiatric disorders. Further research is needed to confirm these findings and to explore underlying mechanisms of the associations.
Cesarean delivery (CD) has been associated with postpartum psychiatric disorders, but less is known about the risk of suicidal behaviors. We estimated the incidence and risk of suicide attempts and deaths during the first postpartum year in mothers who delivered via CD v. vaginally.
Method
All deliveries in Sweden between 1973 and 2012 were identified. The mothers were followed since delivery for 12 months or until the date of one of the outcomes (i.e. suicide attempt or death by suicide), death by other causes or emigration. Associations were estimated using Cox proportional hazards regression models.
Results
Of 4 016 789 identified deliveries, 514 113 (12.8%) were CDs and 3 502 676 (87.2%) were vaginal deliveries. During the 12-month follow-up, 504 (0.098%) suicide attempts were observed in the CD group and 2240 (0.064%) in the vaginal delivery group (risk difference: 0.034%), while 11 (0.0037%) deaths by suicide were registered in the CD group and 109 (0.0029%) in the vaginal delivery group (risk difference: 0.008%). Compared to vaginal delivery, CD was associated with an increased risk of suicide attempts [hazard ratio (HR) 1.46; 95% CI 1.32–1.60], but not of deaths by suicide (HR 1.44; 95% CI 0.88–2.36).
Conclusions
Maternal suicidal behaviors during the first postpartum year were uncommon in Sweden. Compared to vaginal delivery, CD was associated with a small increased risk of suicide attempts, but not death by suicide. Improved understanding of the association between CD and maternal suicidal behaviors may promote more appropriate measures to improve maternal mental well-being and further reduce suicidal risks.
The Bangong–Nujiang suture zone (BNSZ), which separates the Gondwana-derived Qiangtang and Lhasa terranes, preserves limited geological records of the Bangong–Nujiang Ocean (BNO). The timing of opening of this ocean has been hotly debated due to the rare and complicated rock records in the suture zones, which span over 100 Ma from Carboniferous–Permian to Early Jurassic time, based on geological, palaeontological and palaeomagnetic data. A combination of geochemical, geochronological and isotopic data are reported for the Riasairi trachytes, central BNSZ, northern Tibet, to constrain its petrogenesis and tectonic settings. Zircon U–Pb dating by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) yields mean ages of 236 Ma. Geochemically, these rocks are high-K calc-alkaline with moderate SiO2 (59.1–67.5 wt%) and high K2O + Na2O (8.1–11.6 wt%) contents. They are enriched in light rare earth elements with negative Eu anomalies, and show enrichments in high-field-strength elements with positive ‘Nb, Ta’ anomalies, similar to the intra-continental rift setting-related felsic lavas from the African Rift System. The high positive zircon ϵHf(t) and bulk ϵNd(t) values, as well as high initial Pb isotopes, imply a heterogeneous source involving both asthenospheric and subcontinental lithospheric mantle. The field and geochemical data jointly suggest that the Riasairi trachytes within the Mugagangri Group were formed in a continental rift setting. We interpret that the continental-rift-related Riaisairi trachytic lavas as derived from the southern margin of the Qiangtang terrane, implying that the BNO would have opened by Middle Triassic time, well after the commonly interpreted break-up of the Qiangtang terrane from Gondwana.