We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The FNDC5 gene encodes the fibronectin type III domain-containing protein 5 that is a membrane protein mainly expressed in skeletal muscle, and the FNDC5 rs3480 polymorphism may be associated with liver disease severity in non-alcoholic fatty liver disease (NAFLD). We investigated the influence of the FNDC5 rs3480 polymorphism on the relationship between sarcopenia and the histological severity of NAFLD. A total of 370 adult individuals with biopsy-proven NAFLD were studied. The association between the key exposure sarcopenia and the outcome liver histological severity was investigated by binary logistic regression. Stratified analyses were undertaken to examine the impact of FNDC5 rs3480 polymorphism on the association between sarcopenia and the severity of NAFLD histology. Patients with sarcopenia had more severe histological grades of steatosis and a higher prevalence of significant fibrosis and definite non-alcoholic steatohepatitis than those without sarcopenia. There was a significant association between sarcopenia and significant fibrosis (adjusted OR 2·79, 95 % CI 1·31, 5·95, P = 0·008), independent of established risk factors and potential confounders. Among patients with sarcopenia, significant fibrosis occurred more frequently in the rs3480 AA genotype carriers than in those carrying the FNDC5 rs3480 G genotype (43·8 v. 17·2 %, P = 0·031). In the association between sarcopenia and liver fibrosis, there was a significant interaction between the FNDC5 genotype and sarcopenia status (P value for interaction = 0·006). Sarcopenia is independently associated with significant liver fibrosis, and the FNDC5 rs3480 G variant influences the association between sarcopenia and liver fibrosis in patients with biopsy-proven NAFLD.
In conventional linear parameter-varying (LPV) modelling and gain scheduling control design for turbojet engines, the linearisation is performed at a set of equilibrium points, and the validity of such LPV models is ensured near the equilibria. However, the linear model can only provide an approximate description of the engine’s state when the system operates away from equilibrium. In this paper, it is suggested that such linearisation should be carried out not only at equilibrium states but also in transient (off-equilibrium) operating regimes. This will result in a global approximation to the system states whether equilibrium or off-equilibrium. Theoretically, the transient control performance can be improved by introducing such an off-equilibrium linearisation-based control procedure. Subsequently, a gain scheduling control procedure based on off-equilibrium linearisation models is proposed by using sum-of-squares (SOS) programming, which, compared with many convex programming methods, can provide less conservative results. The resulting off-equilibrium linearisation-based nonlinear control procedure with SOS programming can capture a wide range of transient engine dynamics with better accuracy, and further achieve better control performance.
Only 30% or fewer of individuals at clinical high risk (CHR) convert to full psychosis within 2 years. Efforts are thus underway to refine risk identification strategies to increase their predictive power. Our objective was to develop and validate the predictive accuracy and individualized risk components of a mobile app-based psychosis risk calculator (RC) in a CHR sample from the SHARP (ShangHai At Risk for Psychosis) program.
Method
In total, 400 CHR individuals were identified by the Chinese version of the Structured Interview for Prodromal Syndromes. In the first phase of 300 CHR individuals, 196 subjects (65.3%) who completed neurocognitive assessments and had at least a 2-year follow-up assessment were included in the construction of an RC for psychosis. In the second phase of the SHARP sample of 100 subjects, 93 with data integrity were included to validate the performance of the SHARP-RC.
Results
The SHARP-RC showed good discrimination of subsequent transition to psychosis with an AUC of 0.78 (p < 0.001). The individualized risk generated by the SHARP-RC provided a solid estimation of conversion in the independent validation sample, with an AUC of 0.80 (p = 0.003). A risk estimate of 20% or higher had excellent sensitivity (84%) and moderate specificity (63%) for the prediction of psychosis. The relative contribution of individual risk components can be simultaneously generated. The mobile app-based SHARP-RC was developed as a convenient tool for individualized psychosis risk appraisal.
Conclusions
The SHARP-RC provides a practical tool not only for assessing the probability that an individual at CHR will develop full psychosis, but also personal risk components that might be targeted in early intervention.
Singapore has a highly developed and open economy. The country, which has the highest gross domestic product (GDP) per capita in Southeast Asia, is also well-known for its corruption-free environment. The main drivers of the growth of the Singaporean economy include the manufacturing, finance and insurance sectors (Ministry of Trade and Industry 2017). The Singapore population is highly educated and tech-savvy, with a literacy rate of 97.0 per cent amongst residents aged 15 years and above (Department of Statistics Singapore n.d.), and 84 per cent of the population are internet users in 2016 (IMDA 2018). The Singapore government has encouraged Singaporean businesses to venture into overseas markets by taking advantage of new opportunities in the digital economy and build strong capabilities in innovation and enterprise (Budget 2017). These conditions make Singapore a conducive environment for the growth and development of e-commerce.
This chapter provides an analysis of the current state of e-commerce in Singapore from a number of perspectives. The outline of this chapter is as follows. After defining e-commerce in Section 2, the state of e-commerce infrastructure is discussed in Section 3. The size of Singapore's e-commerce is examined in Section 4. The evolution of e-commerce in terms of the major players in the industry is discussed in Section 5. Government policies, as well as the laws and regulations governing e-commerce in the country, are covered in Sections 6 and 7, respectively. Competition law and policy-related issues are discussed in Section 8. Factors that can impede and restrict the opportunities for e-commerce growth in Singapore are discussed in Section 9. Finally, Section 10 concludes by presenting policy recommendations for the further development of e-commerce in Singapore.
Defining E-commerce
E-commerce refers to the sale and purchase of goods and services over the internet and includes ancillary activities which support such transactions. E-commerce transactions can take place between businesses and consumers (B2C), between businesses (B2B) or between the government and businesses (G2B); between consumers (C2C) whereby consumers buy and sell directly to each other through platforms such as eBay; as well as between the government and citizens via the offering of e-Government services.
This paper presents new LA-ICP-MS zircon U–Pb chronology, whole-rock geochemical and zircon Hf isotopic data for the felsic lavas of the Huili Group from the southwestern Yangtze Block. LA-ICP-MS zircon U–Pb dating shows that these rocks were emplaced in Late Mesoproterozoic time (∼1028 to 1019 Ma). Relative to typical I-type and S-type granitoids, all the samples are characterized by low Sr and Eu, and high high-field-strength element contents, high TFeO/MgO, enriched rare earth element compositions and negative Eu anomalies, indicating that they share the geochemical signatures of A-type granitoid. They can be further divided into two groups: Group I and Group II. Group I are A1-type felsic rocks and were produced by fractional crystallization of alkaline basaltic magmas. The Group II felsic lavas belong to the A2-type and were derived by partial melting of a crustal source with mixing of mantle-derived magmas. Both Group I and Group II felsic lavas may erupt in a continental back-arc setting. The coexistence of A1- and A2-type rocks in the southwestern Yangtze Block suggests that they can occur in the same tectonic setting.
Nanoscale magnetization modulation by electric field enables the construction of low-power spintronic devices for information storage applications and, etc. Electric field-induced ion migration can introduce desired changes in the material's stoichiometry, defect profile, and lattice structure, which in turn provides a versatile and convenient means to modify the materials’ chemical-physical properties at the nanoscale and in situ. In this review, we provide a brief overview on the recent study on nanoscale magnetization modulation driven by electric field-induced migration of ionic species either within the switching material or from external sources. The formation of magnetic conductive filaments that exhibit magnetoresistance behaviors in resistive switching memory via foreign metal ion migration and redox activities is also discussed. Combining the magnetoresistance and quantized conductance switching of the magnetic nanopoint contact structure may provide a future high-performance device for non-von Neumann computing architectures.
This study aim to derive and validate a simple and well-performing risk calculator (RC) for predicting psychosis in individual patients at clinical high risk (CHR).
Methods
From the ongoing ShangHai-At-Risk-for-Psychosis (SHARP) program, 417 CHR cases were identified based on the Structured Interview for Prodromal Symptoms (SIPS), of whom 349 had at least 1-year follow-up assessment. Of these 349 cases, 83 converted to psychosis. Logistic regression was used to build a multivariate model to predict conversion. The area under the receiver operating characteristic (ROC) curve (AUC) was used to test the effectiveness of the SIPS-RC. Second, an independent sample of 100 CHR subjects was recruited based on an identical baseline and follow-up procedures to validate the performance of the SIPS-RC.
Results
Four predictors (each based on a subset of SIPS-based items) were used to construct the SIPS-RC: (1) functional decline; (2) positive symptoms (unusual thoughts, suspiciousness); (3) negative symptoms (social anhedonia, expression of emotion, ideational richness); and (4) general symptoms (dysphoric mood). The SIPS-RC showed moderate discrimination of subsequent transition to psychosis with an AUC of 0.744 (p < 0.001). A risk estimate of 25% or higher had around 75% accuracy for predicting psychosis. The personalized risk generated by the SIPS-RC provided a solid estimate of conversion outcomes in the independent validation sample, with an AUC of 0.804 [95% confidence interval (CI) 0.662–0.951].
Conclusion
The SIPS-RC, which is simple and easy to use, can perform in the same manner as the NAPLS-2 RC in the Chinese clinical population. Such a tool may be used by clinicians to counsel appropriately their patients about clinical monitor v. potential treatment options.
Given the global water challenges, solar-driven steam generation has become a renewed topic recently as an energy-efficient way for clean water production. Here, a hybrid plasmonic structure consisting of a top layer of TiN nanoparticles (NPs) and a bottom layer of mesoporous anodized alumina membrane (AAM) was rationally designed and fabricated. The top TiN NPs with broadband light absorption acted as a plasmonic heating layer, which converted the absorbed light to heat efficiently for interfacial water heating. The AAM acted as the mechanical support layer, guaranteeing the heat isolation and continuous water replenishment. With optimized thickness of the TiN top layer, a solar steam generation efficiency of 87.7% was achieved in this study. This efficiency is comparable or even higher than prior studies. The current work proves the capability of the TiN NPs as an alternative photothermal material.
Based on 15 diffusion couples located in face centered cubic single-phase region of ternary Ni–Al–Mo system, high-throughput determination of composition-dependent interdiffusivity matrices at 1273, 1373, and 1473 K was performed by using the recently developed numerical inverse method. The determined main interdiffusivities over the investigated composition and temperature ranges are all positive, and
$\tilde D_{{\rm{AlAl}}}^{{\rm{Ni}}}$
is generally larger than
$\tilde D_{{\rm{MoMo}}}^{{\rm{Ni}}}$
. Moreover,
$\tilde D_{{\rm{AlAl}}}^{{\rm{Ni}}}$
generally increases with concentration of Al, while
$\tilde D_{{\rm{MoMo}}}^{{\rm{Ni}}}$
increases with concentrations of both Al and Mo. In contrast, the cross interdiffusivities can be either positive or negative. Average relative errors of
$\tilde D_{{\rm{AlAl}}}^{{\rm{Ni}}}$
,
$\tilde D_{{\rm{AlMo}}}^{{\rm{Ni}}}$
,
$\tilde D_{{\rm{MoAl}}}^{{\rm{Ni}}}$
, and
$\tilde D_{{\rm{MoMo}}}^{{\rm{Ni}}}$
were evaluated to be 2.4, 5.1, 16.1, and 1.7% using error propagation. Furthermore, our prediction of composition profiles and interdiffusion fluxes based on evaluated interdiffusivity matrices agrees quite well with measured data. Traditional Matano–Kirkaldy method was also applied to further verify the reliability of obtained interdiffusivities. Besides, three-dimensional planes of activation energies of main interdiffusivities were also evaluated using the Arrhenius equation.
A new lithium ion hybrid supercapacitor is reported, in which the negative electrode was made from ZnO nano-crystals coated with a nitrogen doped carbon, and a positive electrode composed of activated carbon. The ZnO nano-crystals were highly dispersed in a nitrogen doped carbon matrix through a bio-inspired route. Dopamine, used as the nitrogen and carbon source, self-polymerized and deposited onto the surface of ZnO nano-crystal. After pyrolysis, a nitrogen doped amorphous carbon coated ZnO nano-crystal materials were obtained. The characteristics of the synthesized carbon coated ZnO nano-crystal electrode as well as the electrochemical performance of the hybrid device were investigated. The ZnO nano-crystal structure was preserved in the course of the carbon coating. The lithium ion supercapacitor demonstrated a high capacity and good cycling stability. Such good performance can be attributed to improved conductivity, the prevention of ZnO nano particles from pulverization and the high degree of crystallinity of the ZnO material.
The effects of various parameters, such as thermal properties of substrates, thermal interface materials (TIMs) and heat sinks on the thermal performance of the light emitting diode (LED) light bars and backlight module are investigated experimentally and numerically in terms of junction temperature (Tj) and thermal resistances from junction to air (Rj-a). The results show that the measured Rj-a of the light bars by powering-on five LEDs in the test is different from one by powering-on only one LED, resulting from the extra heat coming from the adjacent LED packages affecting the Tj for the case of powering-on five LEDs. For the modules, Rj-a is significantly reduced by using the heat sinks for all backlight modules, and aluminum and iron heat sinks do not show any obvious difference in heat dissipation along with any substrates and TIMs. Furthermore, both experimental and simulation results show that the thermal conductivity of the substrates are more important and dominant than TIM and heat sink for the Rj-a of the backlight modules concerned, and also demonstrate that the thermal field for the local model can represent the one in full-scale backlight module.
It remains unclear whether the topological deficits of the white matter network documented in cross-sectional studies of chronic schizophrenia patients are due to chronic illness or to other factors such as antipsychotic treatment effects. To answer this question, we evaluated the white matter network in medication-naive first-episode schizophrenia patients (FESP) before and after a course of treatment.
Method
We performed a longitudinal diffusion tensor imaging study in 42 drug-naive FESP at baseline and then after 8 weeks of risperidone monotherapy, and compared them with 38 healthy volunteers. Graph theory was utilized to calculate the topological characteristics of brain anatomical network. Patients’ clinical state was evaluated using the Positive and Negative Syndrome Scale (PANSS) before and after treatment.
Results
Pretreatment, patients had relatively intact overall topological organizations, and deficient nodal topological properties primarily in prefrontal gyrus and limbic system components such as the bilateral anterior and posterior cingulate. Treatment with risperidone normalized topological parameters in the limbic system, and the enhancement positively correlated with the reduction in PANSS-positive symptoms. Prefrontal topological impairments persisted following treatment and negative symptoms did not improve.
Conclusions
During the early phase of antipsychotic medication treatment there are region-specific alterations in white matter topological measures. Limbic white matter topological dysfunction improves with positive symptom reduction. Prefrontal deficits and negative symptoms are unresponsive to medication intervention, and prefrontal deficits are potential trait biomarkers and targets for negative symptom treatment development.
X-ray powder diffraction (XRPD) data for Palbociclib, C24H29N7O2, are reported [a = 18.182(2) Å, b = 11.508(1) Å, c = 5.041(1) Å, α = 81.282(7)°, β = 97.423(7)°, γ = 102.415(2)°, unit-cell volume V = 1013.1(4) Å3, Z = 2, and space group P-1. All XRPD measured lines were indexed and no detectable impurities were observed.
2-[((3R)-5-oxo-4-phenyltetrahydrofuran-3-yl)methyl]isoindoline-1,3-dione, C19H15NO4, was synthesized for the first time. Its structure was characterized by element analysis, ultraviolet spectrometry, nuclear magnetic resonance, and single X-ray diffraction (SXRD). X-ray powder diffraction (XRPD) data of title compound were collected and calculated. The result of SXRD shows that its crystal system is orthorhombic, space group is Pbca, and unit-cell parameters are a = 8.861 57(7), b = 14.6666(10), c = 24.4247(19) Å, α =β =γ =90°, unit-cell volume V = 3174.4 Å3, and Z = 8. All XRPD measured lines were indexed and consistent with the Pbca space group [a = 14.639(7), b = 24.378(3), c = 8.918(1) Å, α = β = γ = 90°, unit-cell volume V = 3182.7(9) Å3, Z = 8]. No detectable impurities were observed.
Accurate velocity estimates are critical in highly dynamic positioning, airborne gravimetry, and geophysics applications. This paper focuses on the evaluation of the performance of velocity estimation using the BeiDou navigation satellite system (BDS) alone and integrated Global Positioning System (GPS)/BDS. Firstly, we analyse and compare the position-derivation method and analytical method which are used to calculate BDS satellite velocity from broadcast ephemeris. Results show that the accuracy of the estimated velocity by position-derivation method can be within 1 mm/s and better than that of the analytical method. Secondly, velocity estimation tests were carried out both in static and kinematic modes. The results show that: 1) the accuracy of BDS velocity estimation is in the same order of magnitude to that of GPS; 2) Compared with a single navigation system, the stability and accuracy of velocity estimation can be remarkably improved by integrated GPS/BDS, especially under conditions of poor observation; 3) Compared with Helmert variance component estimation, it is more appropriate and efficient to assign the weights of different types of observations using equivalent weight ratio. Finally, the ionospheric influence on velocity estimation with single-frequency observations can reach several mm/s; this influence can be significantly mitigated by using ionosphere-free combination observations.
Associations of folic acid supplementation with risk of preterm birth (PTB) and small-for-gestational-age (SGA) birth were unclear for the Chinese populations. The aim of the present study was to investigate the associations in a large Chinese prospective cohort study: the Jiaxing Birth Cohort. In the Jiaxing Birth Cohort, 240 954 pregnant women visited local clinics or hospitals within their first trimester in Southeast China during 1999–2012. Information on anthropometric parameters, folic acid supplementation and other maternal characteristics were collected by in-person interviews during their first visit. Pregnancy outcomes were recorded during the follow-up of these participants. Multinomial logistic regression was used to examine the association of folic acid supplementation with pregnancy outcomes. The prevalence of folic acid supplementation was 24·9 % in the cohort. The prevalence of PTB and SGA birth was 3·48 and 9·2 %, respectively. Pre-conceptional folic acid supplementation was associated with 8 % lower risk of PTB (relative risk (RR) 0·92; 95 % CI 0·85, 1·00; P=0·04) and 19 % lower risk of SGA birth (RR 0·81; 95 % CI 0·70, 0·95; P=0·008), compared with non-users. Higher frequency of pre-conceptional folic acid use was associated with lower risk of PTB (Ptrend=0·032) and SGA birth (Ptrend=0·046). No significant association between post-conceptional initiation of folic acid supplementation and either outcome was observed. In conclusion, the present study suggests an association between pre-conceptional, but not post-conceptional, folic acid supplementation and lower risk of PTB and SGA birth in the Jiaxing Birth Cohort. Further research in other cohorts of large sample size is needed to replicate these findings.
Data on grain size and heavy mineral composition for surface sediments on the Prydz Bay continental shelf was analysed to identify sediment features and provenance. The grain size composition of surface sediments indicate spatial variations in the glaciomarine environment and the key factors influencing sedimentation, which on the shelf include topography/water depth, currents and icebergs. The study area was divided into two sections by Q-type factor analysis: section I included Prydz Channel, Amery Basin and Svenner Channel, and section II included Four Ladies Bank, Fram Bank and the area in front of the Amery Ice Shelf. Sedimentation in section I is mainly controlled by currents and topography/water depth. However, in section II, icebergs/floating ice masses, the Amery Ice Shelf and currents have prominent effects on sedimentation. The heavy mineral composition indicates that surface sediments on the eastern side of the bay, including Four Ladies Bank, are primarily derived from Princess Elizabeth Land. Sediments in the area in front of the Amery Ice Shelf, Svenner Channel, Amery Basin and Prydz Channel have a mixed source from the eastern regions around the bay, including the Prince Charles Mountains and Princess Elizabeth Land. The contribution from Mac. Robertson Land to sediment at Fram Bank is limited.
X-ray powder diffraction data, unit-cell parameters, and space group for letrozole, C17H11N5, are reported [a = 7.034(0) Å, b = 16.177(5) Å, c = 13.411(3) Å, α = γ = 90°, β = 105.71(9)°, unit-cell volume V = 1469.0(3) Å3, Z = 4, and space-group P21/c]. All measured lines were indexed and are consistent with the P21/c space group. No detectable impurity was observed.
Epidemiological studies have demonstrated inconsistent associations between tea consumption and mortality of all cancers, CVD and all causes. To obtain quantitative overall estimates, we conducted a dose–response meta-analysis of prospective cohort studies. A literature search in PubMed and Embase up to April 2015 was conducted for all relevant papers published. Random-effects models were used to calculate pooled relative risks (RR) with 95 % CI. In eighteen prospective studies, there were 12 221, 11 306 and 55 528 deaths from all cancers, CVD and all causes, respectively. For all cancer mortality, the summary RR for the highest v. lowest category of green tea and black tea consumption were 1·06 (95 % CI 0·98, 1·15) and 0·79 (95 % CI 0·65, 0·97), respectively. For CVD mortality, the summary RR for the highest v. lowest category of green tea and black tea consumption were 0·67 (95 % CI 0·46, 0·96) and 0·88 (95 % CI 0·77, 1·01), respectively. For all-cause mortality, the summary RR for the highest v. lowest category of green tea and black tea consumption were 0·80 (95 % CI 0·68, 0·93) and 0·90 (95 % CI 0·83, 0·98), respectively. The dose–response analysis indicated that one cup per d increment of green tea consumption was associated with 5 % lower risk of CVD mortality and with 4 % lower risk of all-cause mortality. Green tea consumption was significantly inversely associated with CVD and all-cause mortality, whereas black tea consumption was significantly inversely associated with all cancer and all-cause mortality.
In this study, the authors have comparatively studied the influence of H2 addition on the structures and properties of ZnO films grown by metal organic (MO) chemical vapor deposition with dimethyl zinc and diethyl zinc as zinc precursors and N2O and O2 as oxygen sources, respectively. Various characterization methods, like x-ray diffraction, Raman scattering, Hall effect, photoluminescence, and atomic force microscopy, have been utilized, showing that H2 has different effects on different MO precursors and oxidants. The H2 addition has significantly improved the crystal structural quality of ZnO thin films for the case of dimethyl zinc source, but an opposite effect has been found for the case of diethyl zinc. Moreover, the H2 addition can significantly improve the optical properties of the ZnO films, regardless of the zinc MO sources used, with the surface morphology improved too. The suppression of carbon-related contaminations depends on the use of different precursors and whether H2 is added. By analyzing the experimental results, we have given the effects of H2 on the decomposition of the discussed MO precursors and oxidants, the proposed mechanism could be used in understanding the experimental data.