We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Psychotic-like experiences (PLEs), especially for persistent PLEs, are highly predictive of subsequent mental health problems. Hence, it is crucial to explore the psychopathological associations underlying the occurrence and persistence of PLEs. This study aimed to explore the above issues through a longitudinal dynamic network approach among PLEs and psychological and psychosocial factors.
Methods
A total of 3,358 college students completed two waves of online survey (from Oct 2021 to Oct 2022). Socio-demographic information was collected at baseline, and PLEs, depressive and anxiety symptoms, and adverse life events were assessed in both waves. Cross-lagged panel network analyses were used to establish networks among individuals with baseline PLEs as well as those without.
Results
At baseline, 455(13.5%) students were screened positive for PLEs. Distinct dynamic network structures were revealed among participants with baseline PLEs and those without. While ‘psychomotor disturbance’ had the strongest connection with PLEs in participants with baseline PLEs, ‘suicide/self-harm’ was most associated with PLEs in those without. Among all three subtypes of PLEs, bizarre experiences and persecutory ideation were the most affected nodes by other constructs in participants with baseline PLEs and those without, respectively. Additionally, wide interconnections within the PLEs construct existed only among participants without baseline PLEs.
Conclusions
The study provides time-variant associations between PLEs and depressive symptoms, anxiety symptoms, and adverse life events using network structures. These findings help to reveal the crucial markers of the occurrence and persistence of PLEs, and shed high light on future intervention aimed to prevent and relieve PLEs.
We perform linear stability analysis and direct numerical simulations to study the effect of the radius ratio on the instability and flow characteristics of the sheared annular centrifugal Rayleigh–Bénard convection, where the cold inner cylinder and the hot outer cylinder rotate with a small angular velocity difference. With the shear enhancement, the thermal convection is suppressed and finally becomes stable for different radius ratios $\{\eta \in \mathbb {R}|0.2\leqslant \eta \le 0.95\}$. Considering the inhomogeneous distribution of shear stresses in the base flow, a new global Richardson number $Ri_g$ is defined and the marginal-state curves for different radius ratios are successfully unified in the parameter domain of $Ri_g$ and the Rayleigh number $Ra$. The results are consistent with the marginal-state curve of the wall-sheared classical Rayleigh–Bénard convection in the streamwise direction, demonstrating that the basic stabilization mechanisms are identical. Moreover, systems with small radius ratios exhibit greater geometric asymmetry. On the one hand, this results in a smaller equivalent aspect ratio for the system, accommodating fewer convection roll pairs; fewer roll pairs are more likely to cause a transition in the flow structure during shear enhancement. On the other hand, the shear distribution is more inhomogeneous, allowing for an outward shift of the convection region and the elevation of bulk temperature under strong shear.
This study was conducted to investigate whether methionyl-tRNA synthetase (MetRS) is a mediator of methionine (Met)-induced crop milk protein synthesis via the janus kinase 2 (JAK2)/signal transducer and activator of transcription 5 (STAT5) signalling pathway in breeding pigeons. In Experiment 1, a total of 216 pairs of breeding pigeons were divided into three groups (control, Met-deficient, and Met-rescue groups). In Experiments 2 and 3, forty pairs of breeding pigeons from each experiment were allocated into four groups. The second experiment included a control group and three MetRS inhibitor (REP8839) groups. The third experiment included a Met-deficient group, Met-sufficient group, REP8839 + Met-deficient group and REP8839 + Met-sufficient group. Experiment 1 showed that Met supplementation increased crop development, crop milk protein synthesis, the protein expression of MetRS and JAK2/STAT5 signalling pathway, and improved squab growth. Experiment 2 showed that crop development, crop milk protein synthesis and the protein expression of MetRS and the JAK2/STAT5 signalling pathway were decreased, and squab growth was inhibited by the injection of 1·0 mg/kg body weight REP8839, which was the selected dose for the third experiment. Experiment 3 showed that Met supplementation increased crop development, crop milk protein synthesis and the expression of MetRS and JAK2/STAT5 signalling pathway and rescued squab growth after the injection of REP8839. Moreover, the co-immunoprecipitation results showed that there was an interaction between MetRS and JAK2. Taken together, these findings indicate that MetRS mediates Met-induced crop milk protein synthesis via the JAK2/STAT5 signalling pathway, resulting in improved squab growth in breeding pigeons.
The measurement of X-ray continuous emission from laser-driven plasma was achieved through multiple monochromatic imaging utilizing a multilayer mirror array. This methodology was exemplified by the development of an eight-channel X-ray imaging system, capable of operating in the energy range of several keV with a spatial resolution of approximately 3 μm. By integrating this system with a streak camera, the temperature and trajectory of imploding capsules were successfully measured at the kJ-class Shenguang III prototype laser facility. This approach provides a synchronous diagnostic method for the spatial, temporal and spectral analysis of laser-driven plasma, characterized by its high efficiency and resolution.
The Argentine ant (Linepithema humile) and the little fire ant (Wasmannia auropunctata) are among the top 100 invasive alien species globally, causing significant ecological and economic harm. Therefore, it is crucial to study their potential geographic distribution worldwide. This study aimed to predict their global distribution under current and future climate conditions. We used distribution data from various sources, including CABI, GBIF, and PIAKey, and key climate variables selected from 19 environmental factors to model their potential geographic distribution using MaxEnt. The AUC values were 0.925 and 0.937 for L. humile and W. auropunctata, respectively, indicating good predictive performance. Suitable areas for L. humile were mainly in southern North America, northern South America, Europe, central Asia, southern Oceania, and parts of Africa, while W. auropunctata suitable areas were mostly in southern North America, most of South America, a small part of Europe, southern Asia, central Africa, and some parts of Oceania. Under climate change scenario, suitable areas for L. humile increased, while highly suitable areas for W. auropunctata decreased. The top four countries with the largest areas of overlapping suitable habitat under current climate were Brazil, China, Australia, and Argentina, while under future SSP585 climate scenario, the top four countries were Brazil, China, Indonesia, and Argentina. Some countries, such as Estonia and Finland, will see an overlapping adaptation area under climate change. In conclusion, this study provides insight into controlling the spread and harm of L. humile and W. auropunctata.
Double-cone ignition [Zhang et al., Phil. Trans. R. Soc. A 378, 20200015 (2020)] was proposed recently as a novel path for direct-drive inertial confinement fusion using high-power lasers. In this scheme, plasma jets with both high density and high velocity are required for collisions. Here we report preliminary experimental results obtained at the Shenguang-II upgrade laser facility, employing a CHCl shell in a gold cone irradiated with a two-ramp laser pulse. The CHCl shell was pre-compressed by the first laser ramp to a density of 3.75 g/cm3 along the isentropic path. Subsequently, the target was further compressed and accelerated by the second laser ramp in the cone. According to the simulations, the plasma jet reached a density of up to 15 g/cm3, while measurements indicated a velocity of 126.8 ± 17.1 km/s. The good agreements between experimental data and simulations are documented.
Broomcorn millet and foxtail millet were first cultivated in Neolithic China then the process spread west across Asia during the Bronze Age. But the distinctive ceramic, and later bronze, vessels utilised in East Asian cuisines for boiling and steaming grains did not move west alongside these crops. Here, the authors use measurements of 3876 charred millet grains to evaluate regional variations and implications for food preparation. In contrast to wheat grains, which became smaller as their cultivation moved east, millet grains became larger as they spread from northern China into Inner Asia and Tibet. This indicates the decoupling of millets from associated cooking techniques as they reached geographical and cultural areas.
A modulational instability of nonlinearly interacting electron whistlers and magnetosonic perturbations is studied in the present paper. For typical parameters, there is no modulational instability. However, modulational instability appears in special cases. For example, when the whistler wavenumber is small enough, there is modulational instability. Its growth rate decreases as the angle between the external magnetic field and the perturbed wave's direction increases, while it increases as the whistler wavenumber increases. It is also found that there is no modulational instability when the whistler wavenumber is larger than a critical value ($k_0 > 0.05$), in which the perturbed wave frequency increases as the angle between the external magnetic field and the perturbed wave's direction increases when the angle between the external magnetic field and the perturbed wave's direction is large enough. Whereas, the perturbed wave frequency first increases as the whistler wavenumber increases, reaches a peak value and then decreases as whistler wavenumber increases.
Guiding-centre orbit-following simulations of the charge exchange (CX) loss of neutral beam injection (NBI) ions are presented. The finite Larmor radius (FLR) effect in the fast ion–neutral collision can be included in guiding-centre orbit-following simulations by using the gyroaverage method. It is proved that the neutralization probability of fast ions computed by using the gyroaverage method in the guiding-centre orbit simulation is roughly the same as that computed in the full-orbit simulation when the time step in the guiding-centre simulation is the order of the gyroperiod. The CX losses of NBI fast ions for two NBIs in the EAST tokamak have been simulated by the guiding-centre orbit-following code GYCAVA, and the FLR effect in the fast ion–neutral collision on CX losses has been numerically studied. The CX effect of the fast ion–neutral collision can significantly enhance NBI ion losses on EAST. The FLR effect in the fast ion–neutral collision can enhance the CX loss. Vertical asymmetry of localized heat loads induced by CX losses is found, which is related to the FLR effect of fast ions and the strong radial gradient of the neutral density near the plasma edge. Heat loads induced by CX losses are localized in the regions near the poloidal angle $\theta =-60^\circ$, because the likelihood of exchanging charge is the largest at gyrophase $\xi ={\rm \pi}$, and this leads to fast downwards moving neutrals. Fast ion loss fractions induced by CX increase with the neutral density increasing.
The velocity interferometer system for any reflector (VISAR) coupled with a streaked optical pyrometer (SOP) system is used as a diagnostic tool in inertial confinement fusion (ICF) experiments involving equations of state and shock timing. To validate the process of adiabatically compressing the fuel shell through precise tuning of shocks in experimental campaigns for the double-cone ignition (DCI) scheme of ICF, a compact line-imaging VISAR with an SOP system is designed and implemented at the Shenguang-II upgrade laser facility. The temporal and spatial resolutions of the system are better than 30 ps and 7 μm, respectively. An illumination lens is used to adjust the lighting spot size matching with the target size. A polarization beam splitter and λ/4 waveplate are used to increase the transmission efficiency of our system. The VISAR and SOP work at 660 and 450 nm, respectively, to differentiate the signals from the scattered lights of the drive lasers. The VISAR can measure the shock velocity. At the same time, the SOP system can give the shock timing and relative strength. This system has been used in different DCI campaigns, where the generation and propagation processes of multi-shock are carefully diagnosed.
Non-clinical aspects of life, such as social, environmental, behavioral, psychological, and economic factors, what we call the sociome, play significant roles in shaping patient health and health outcomes. This paper introduces the Sociome Data Commons (SDC), a new research platform that enables large-scale data analysis for investigating such factors.
Methods:
This platform focuses on “hyper-local” data, i.e., at the neighborhood or point level, a geospatial scale of data not adequately considered in existing tools and projects. We enumerate key insights gained regarding data quality standards, data governance, and organizational structure for long-term project sustainability. A pilot use case investigating sociome factors associated with asthma exacerbations in children residing on the South Side of Chicago used machine learning and six SDC datasets.
Results:
The pilot use case reveals one dominant spatial cluster for asthma exacerbations and important roles of housing conditions and cost, proximity to Superfund pollution sites, urban flooding, violent crime, lack of insurance, and a poverty index.
Conclusion:
The SDC has been purposefully designed to support and encourage extension of the platform into new data sets as well as the continued development, refinement, and adoption of standards for dataset quality, dataset inclusion, metadata annotation, and data access/governance. The asthma pilot has served as the first driver use case and demonstrates promise for future investigation into the sociome and clinical outcomes. Additional projects will be selected, in part for their ability to exercise and grow the capacity of the SDC to meet its ambitious goals.
Understanding the neural mechanism underlying the transition from suicidal ideation to action is crucial but remains unclear. To explore this mechanism, we combined resting-state functional connectivity (rsFC) and computational modeling to investigate differences between those who attempted suicide(SA) and those who hold only high levels of suicidal ideation(HSI).
Methods
A total of 120 MDD patients were categorized into SA group (n=47) and HSI group (n=73). All participants completed a resting-state functional MRI scan, with three subregions of the insula and the dorsal anterior cingulate cortex (dACC) being chosen as the region of interest (ROI) in seed-to-voxel analyses. Additionally, 86 participants completed the balloon analogue risk task (BART), and a five-parameter Bayesian modeling of BART was estimated.
Results
In the SA group, the FC between the ventral anterior insula (vAI) and the superior/middle frontal gyrus (vAI-SFG, vAI-MFG), as well as the FC between posterior insula (pI) and MFG (pI-MFG), were lower than those in HSI group. The correlation analysis showed a negative correlation between the FC of vAI-SFG and psychological pain avoidance in SA group, whereas a positive correlation in HSI group. Furthermore, the FC of vAI-MFG displayed a negative correlation with loss aversion in SA group, while a positive correlation was found with psychological pain avoidance in HSI group.
Conclusion
In current study, two distinct neural mechanisms were identified in the insula which involving in the progression from suicidal ideation to action. Dysfunction in vAI FCs may gradually stabilize as individuals experience heightened psychological pain, and a shift from positive to negative correlation patterns of vAI-MFC may indicate a transition from state to trait impairment. Additionally, the dysfunction in PI FC may lead to a lowered threshold for suicide by blunting the perception of physical harm.
SARS-CoV-2 rapidly spreads among humans via social networks, with social mixing and network characteristics potentially facilitating transmission. However, limited data on topological structural features has hindered in-depth studies. Existing research is based on snapshot analyses, preventing temporal investigations of network changes. Comparing network characteristics over time offers additional insights into transmission dynamics. We examined confirmed COVID-19 patients from an eastern Chinese province, analyzing social mixing and network characteristics using transmission network topology before and after widespread interventions. Between the two time periods, the percentage of singleton networks increased from 38.9$ \% $ to 62.8$ \% $$ (p<0.001) $; the average shortest path length decreased from 1.53 to 1.14 $ (p<0.001) $; the average betweenness reduced from 0.65 to 0.11$ (p<0.001) $; the average cluster size dropped from 4.05 to 2.72 $ (p=0.004) $; and the out-degree had a slight but nonsignificant decline from 0.75 to 0.63 $ (p=0.099). $ Results show that nonpharmaceutical interventions effectively disrupted transmission networks, preventing further disease spread. Additionally, we found that the networks’ dynamic structure provided more information than solely examining infection curves after applying descriptive and agent-based modeling approaches. In summary, we investigated social mixing and network characteristics of COVID-19 patients during different pandemic stages, revealing transmission network heterogeneities.
The 4H-SiC crystal is found to have great potential in terahertz generation via nonlinear optical frequency conversion due to its extremely high optical damage threshold, wide transparent range, etc. In this paper, optical rectification (OR) with tilted-pulse-front (TPF) setting based on the 4H-SiC crystal is proposed. The theory accounts for the optimization of incident pulse pre-chirping in the TPF OR process under high-intensity femtosecond laser pumping. Compared with the currently recognized LiNbO3-based TPF OR, which generates a single-cycle terahertz pulse within 3 THz, 4H-SiC demonstrates a significant advantage in producing ultra-widely tunable (up to over 14 THz, TPF angle 31°–38°) terahertz waves with high efficiency (~10–2) and strong field (~MV/cm). Besides, the spectrum characteristics, as well as the evolution from single- to multi-cycle terahertz pulses can be modulated flexibly by pre-chirping. The simulation results show that 4H-SiC enables terahertz frequency extending to an unprecedent range by OR, which has extremely important potential in strong-field terahertz applications.
In this paper, we explore potential surplus modelling improvements by investigating how well the available models describe an insurance risk process. To this end, we obtain and analyse a real-life data set that is provided by an anonymous insurer. Based on our analysis, we discover that both the purchasing process and the corresponding claim process have seasonal fluctuations. Some special events, such as public holidays, also have impact on these processes. In the existing literature, the seasonality is often stressed in the claim process, while the cash inflow usually assumes simple forms. We further suggest a possible way of modelling the dependence between these two processes. A preliminary analysis of the impact of these patterns on the surplus process is also conducted. As a result, we propose a surplus process model which utilises a non-homogeneous Poisson process for premium counts and a Cox process for claim counts that reflect the specific features of the data.
To address coupling motion issues and realize large constant force range of microgrippers, we present a serial two-degree-of-freedom compliant constant force microgripper (CCFMG) in this paper. To realize a large output displacement in a compact structure, Scott–Russell displacement amplification mechanisms, bridge-type displacement amplification mechanisms, and lever amplification mechanisms are combined to compensate stroke of piezoelectric actuators. In addition, constant force modules are utilized to achieve a constant force output. We investigated CCFMG’s performances by means of pseudo-rigid body models and finite element analysis. Simulation results show that the proposed CCFMG has a stroke of 781.34 ${\unicode[Times]{x03BC}}\mathrm{m}$ in the X-direction and a stroke of 258.05 ${\unicode[Times]{x03BC}}\mathrm{m}$ in the Y-direction, and the decoupling rates in two directions are 1.1% and 0.9%, respectively. The average output constant force of the clamp is 37.49 N. The amplification ratios of the bridge-type amplifier and the Scott–Russell amplifier are 7.02 and 3, respectively. Through finite element analysis-based optimization, the constant force stroke of CCFMG is increased from the initial 1.6 to 3 mm.
The timely identification of the high-risk groups for nosocomial infections (NIs) plays a vital role in its prevention and control. Therefore, it is crucial to investigate whether the ABO blood group is a risk factor for NI. In this study, patients with NI and non-infectionwere matched by the propensity score matching method and a logistic regression model was used to analyse the matched datasets. The study found that patients with the B&AB blood group were susceptible to Escherichia coli (OR = 1.783, p = 0.039); the A blood group were susceptible to Staphylococcus aureus (OR = 2.539, p = 0.019) and Pseudomonas aeruginosa (OR = 5.724, p = 0.003); the A&AB blood group were susceptible to Pseudomonas aeruginosa (OR = 4.061, p = 0.008); the AB blood group were vulnerable to urinary tract infection (OR = 13.672, p = 0.019); the B blood group were susceptible to skin and soft tissue infection (OR = 2.418, p = 0.016); and the B&AB blood group were vulnerable to deep incision infection (OR = 4.243, p = 0.043). Summarily, the patient’s blood group is vital for identifying high-risk groups for NIs and developing targeted prevention and control measures for NIs.
This study aimed to establish a model for predicting the three-year survival status of patients with hypopharyngeal squamous cell carcinoma using artificial intelligence algorithms.
Method
Data from 295 patients with hypopharyngeal squamous cell carcinoma were analysed retrospectively. Training sets comprised 70 per cent of the data and test sets the remaining 30 per cent. A total of 22 clinical parameters were included as training features. In total, 12 different types of machine learning algorithms were used for model construction. Accuracy, sensitivity, specificity, area under the receiver operating characteristic curve and Cohen's kappa co-efficient were used to evaluate model performance.
Results
The XGBoost algorithm achieved the best model performance. Accuracy, sensitivity, specificity, area under the receiver operating characteristic curve and kappa value of the model were 80.9 per cent, 92.6 per cent, 62.9 per cent, 77.7 per cent and 58.1 per cent, respectively.
Conclusion
This study successfully identified a machine learning model for predicting three-year survival status for patients with hypopharyngeal squamous cell carcinoma that can offer a new prognostic evaluation method for the clinical treatment of these patients.