We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A recent study published in Oryx proposed that the extinct Javan tiger Panthera tigris sondaica may still survive on the Island of Java, Indonesia, based on mitochondrial DNA analysis of a single hair sample collected from a location where a tiger was reportedly encountered. However, upon reanalysing the genetic data presented in that study, we conclude that there is little support for this claim. The sequences of the putative tiger hair and Javan tiger museum specimens generated are not from tiger cytoplasmic mitochondrial DNA but more likely the nuclear pseudogene copies of mitochondrial DNA. In addition, the number of mismatches between the two Javan tiger sequences is unusually high for homologous sequences that are both from tigers, suggesting potential issues with data reliability. The paper provides insufficient details on quality control measures, making it impossible to rule out the possibility that errors were introduced during the analysis. Consequently, it is inappropriate to use the sequences presented in that study to infer the existence of the Javan tiger.
This study aimed to assess the relationship between COVID-19 infection-related conditions and depressive symptoms among medical staff after easing the zero-COVID policy in China, and to further examine the mediating role of professional burnout.
Methods
A total of 1716 medical staff from all levels of health care institutions in 16 administrative districts of Beijing, China, were recruited to participate at the end of 2022 in this cross-sectional study. Several multiple linear regressions and mediating effects tests were performed to analyze the data.
Results
At the beginning of the end of the zero-COVID policy in China, 91.84% of respondents reported infection with COVID-19. After adjusting for potential confounding variables, the severity of infection symptoms was significantly positively associated with high levels of depressive symptoms (β = 0.06, P < 0.001), and this association was partially mediated by professional burnout. Specifically, emotional exhaustion (95% CI, 0.131, 0.251) and depersonalization (95% CI, 0.009, 0.043) significantly mediated the association between the severity of infection symptoms and depressive symptoms.
Conclusions
The mental health of medical staff with more severe symptoms of COVID-19 infection should be closely monitored. Also, interventions aimed at reducing emotional exhaustion and depersonalization may effectively reduce their risk of developing depressive symptoms.
In contemporary neuroimaging studies, it has been observed that patients with major depressive disorder (MDD) exhibit aberrant spontaneous neural activity, commonly quantified through the amplitude of low-frequency fluctuations (ALFF). However, the substantial individual heterogeneity among patients poses a challenge to reaching a unified conclusion.
Methods
To address this variability, our study adopts a novel framework to parse individualized ALFF abnormalities. We hypothesize that individualized ALFF abnormalities can be portrayed as a unique linear combination of shared differential factors. Our study involved two large multi-center datasets, comprising 2424 patients with MDD and 2183 healthy controls. In patients, individualized ALFF abnormalities were derived through normative modeling and further deconstructed into differential factors using non-negative matrix factorization.
Results
Two positive and two negative factors were identified. These factors were closely linked to clinical characteristics and explained group-level ALFF abnormalities in the two datasets. Moreover, these factors exhibited distinct associations with the distribution of neurotransmitter receptors/transporters, transcriptional profiles of inflammation-related genes, and connectome-informed epicenters, underscoring their neurobiological relevance. Additionally, factor compositions facilitated the identification of four distinct depressive subtypes, each characterized by unique abnormal ALFF patterns and clinical features. Importantly, these findings were successfully replicated in another dataset with different acquisition equipment, protocols, preprocessing strategies, and medication statuses, validating their robustness and generalizability.
Conclusions
This research identifies shared differential factors underlying individual spontaneous neural activity abnormalities in MDD and contributes novel insights into the heterogeneity of spontaneous neural activity abnormalities in MDD.
Firefighters are frequently exposed to traumatic events and stressful environments and are at particularly high risk of depressive symptoms.
Aims:
The present study aimed to examine the impact of a combined internet-delivered cognitive behavioral therapy (iCBT) and attention bias modification (ABM) intervention to reduce depressive symptoms in firefighters.
Method:
The study was a randomized controlled trial carried out in Kunming, China, and involved the recruitment of 138 active firefighters as participants. The intervention lasted for an 8-week duration, during which participants participated in ABM exercises on alternating days and concurrently underwent eight modules of iCBT courses delivered through a smartphone application. Baseline and post-intervention assessments were conducted to evaluate the effects of the intervention.
Results and Discussion:
Results indicated that the combined iCBT and ABM intervention was significantly effective in reducing symptoms of depression compared with the no intervention control group (U=1644, p<0.001, Wilcoxon r=0.280). No significant change was observed in attention bias post-intervention (U=2460, p=0.737, Wilcoxon r=0.039), while a significant increase was observed in attention-bias variability (U=3172, p<0.001, Wilcoxon r=–0.287). This study provides evidence for the effectiveness of the combined iCBT and ABM intervention in reducing depressive symptoms among firefighters. This study provides conceptual support and preliminary evidence for the effectiveness of the combined iCBT and ABM intervention in reducing depressive symptoms among firefighters.
The disassembly of end-of-life lithium–ion batteries (EOL-LIBs) is inherently complex, owing to their multi-state and multi-type characteristics. To mitigate these challenges, a human–robot collaboration disassembly (HRCD) model is developed. This model capitalizes on the cognitive abilities of humans combined with the advanced automation capabilities of robots, thereby substantially improving the disassembly process’s flexibility and efficiency. Consequently, this method has become the benchmark for disassembling EOL-LIBs, given its enhanced ability to manage intricate and adaptable disassembly tasks. Furthermore, effective disassembly sequence planning (DSP) for components is crucial for guiding the entire disassembly process. Therefore, this research proposes an approach for the generation of HRCD sequences for EOL-LIBs based on knowledge graph, providing assistance to individuals lacking relevant knowledge to complete disassembly tasks. Firstly, a well-defined disassembly process knowledge graph integrates structural information from CAD models and disassembly operating procedure. Based on the acquired information, DSP is conducted to generate a disassembly sequence knowledge graph (DSKG), which serves as a repository in graphical form. Subsequently, knowledge graph matching is employed to align nodes in the existing DSKG, thereby reusing node sequence knowledge and completing the sequence information for the target disassembly task. Finally, the proposed method is validated using retired power LIBs as a case study product.
Spray formed by a myriad of secondary droplets generated by the impact of raindrops on a deep-water pool is studied with a laboratory rain facility. Experiments are performed with two rain rates and raindrops fall on the water surface at a nearly constant velocity. The secondary droplets at various heights above the pool's water surface are recorded with a cinematic digital in-line holographic technique that consists of a high-speed camera, a pulsed Nd:YLF laser and associated optics. The experimental results show that in the heat-map scatter plots of radius versus velocity near the water surface of the pool, the droplets are distributed into three regions, corresponding to distinct physical mechanisms of droplet generation. It is found that the diameter distribution of the droplets in the rain field changes with height above the pool's water surfaces. Both numerical simulation and experimental data reveal that the liquid water content, due to the presence of secondary droplets, in the atmospheric surface layer decreases exponentially with increasing height.
Meta-structures, including metamaterials and metasurfaces, possess remarkable physical properties beyond those observed in natural materials and thus have exhibited unique wave manipulation abilities ranging from quantum to classical transports. The past decades have witnessed the explosive development and numerous implications of meta-structures in elastic-wave control under the Hermitian condition. However, more notably, a lot of recent research has been made to show that non-Hermitian meta-structures offer novel means for wave manipulation. Non-Hermiticity has enhanced both the accuracy and efficiency of wave steering capabilities. To this end, starting from electromagnetics and acoustics, we mainly review the up-to-date progress of non-Hermitian elastic meta-structures with a focus on their extraordinary elastic-wave control. A variety of promising scenarios realized by non-Hermitian elastic metamaterials and metasurfaces, such as the parity-time-symmetric system and the skin effect, are summarized. Furthermore, the perspectives and challenges of non-Hermitian elastic meta-structures for future key opportunities are outlined.
Grass seeds play a critical and fundamental role in grass breeding and production. Elymus sibiricus L. is a widespread Poaceae forage grass in northern Eurasia which is used for ecological restoration and forage production. Sucrose is the main source of substrate and energy required for starch synthesis in the seeds, so the hydrolysis of sucrose determines and influences starch synthesis and filling in the seeds, especially Poaceae. However, the process behind carbohydrate metabolism during E. sibiricus seed development remains unclear. This study addresses a significant gap in our understanding of the carbohydrate metabolism during seed development in E. sibiricus by employing full-length transcriptome sequencing across five developmental stages for the first time. Full-length transcriptome sequencing was performed on E. sibiricus seeds at five developmental stages (S5, S9, S15, S20, S25) to get better molecular insights. We identified 13,205 differentially expressed genes, with 7,471 up-regulated and 5,734 down-regulated. Through KEGG enrichment analysis, genes were enriched in ‘starch and sucrose metabolism’, ‘photosynthetic-related’ and ‘hormone signal transduction’ pathways. Gene ontology enrichment analysis showed that genes were enriched in the ‘beta-amylase activity’ term of molecular functions. In addition, top 21 transcription factor families were identified as involved in seed development. The homologous genes of ABSCISIC ACID-INSENSITIVE 3 (ABI3), NUCLEAR FACTOR-YB1 (NF-YB1), STARCH SYNTHASE I (SSI) were identified as candidate genes of seed development in E. sibiricus. Combined with physiological index, transcriptome analyses, weighted gene co-expression network analysis and real-time quantitative PCR, the mechanism of starch and sucrose content of seed development was revealed and ten hub genes were identified. Overall, this study provides the molecular bases to understand seed development and starch and sucrose metabolism at the different seed developmental stages in E. sibiricus.
The wall-attached structure characteristics of flow and dust concentration fields are investigated in this study based on high-Reynolds-number ($Re_{\tau } \sim O(10^{6})$) synchronous multiphase observations from the Qingtu Lake observation array site (recorded by Liu et al., J. Fluid Mech., vol. 957, 2023, A14). The results show that not only the particle-free flow field but also the particle-laden flow and dust concentration field contain wall-attached structures. The linear coherence spectrum, as a data-driven filter, is adopted to separate the wall-attached portions from the premultiplied spectra. The decomposed spectra for wall-attached structures in streamwise velocity fluctuations under particle-free and particle-laden conditions show obvious outer-scaling and wall-scaling at large-scale and medium-scale ranges, respectively, but the spectra of dust concentration exhibit only wall-scaling rather than outer-scaling. The streamwise length of the most significant wall-attached dust clustering structures in the logarithmic region is approximately five times the boundary layer thickness, and does not change significantly with height. Furthermore, the streamwise turbulence intensity for wall-attached portions follows the universal Townsend–Perry constant, without particle mass loading effect. Correspondingly, the wall-attached portions of the dust concentration also exhibit universal logarithmic decay slope. The remaining non-attached portions for the turbulent velocity and dust concentration have significant dependence on the particle mass loading.
Intracytoplasmic sperm injection (ICSI) is a technique that directly injects a single sperm into the cytoplasm of mature oocytes. Here, we explored the safety of single-sperm cryopreservation applied in ICSI. This retrospective study enrolled 186 couples undergoing ICSI-assisted pregnancy. Subjects were allocated to the fresh sperm (group A)/single-sperm cryopreservation (group B) groups based on sperm type, with their clinical baseline/pathological data documented. We used ICSI-compliant sperm for subsequent in vitro fertilization and followed up on all subjects. The recovery rate/cryosurvival rate/sperm motility of both groups, the pregnancy/outcome of women receiving embryo transfer, and the delivery mode/neonatal-related information of women with successful deliveries were recorded. The clinical pregnancy rate, cumulative clinical pregnancy rate, abortion rate, ectopic pregnancy rate, premature delivery rate, live birth delivery rate, neonatal birth defect rate, and average birth weight were analyzed. The two groups showed no significant differences in age, body mass index, ovulation induction regimen, sex hormone [anti-Müllerian hormone (AMH)/follicle-stimulating hormone (FSH)/luteinizing hormone (LH)] levels, or oocyte retrieval cycles. The sperm recovery rate (51.72%-100.00%) and resuscitation rate (62.09% ± 16.67%) in group B were higher; the sperm motility in the two groups demonstrated no significant difference and met the ICSI requirements. Group B exhibited an increased fertilization rate, decreased abortion rate, and increased safety versus group A. Compared with fresh sperm, the application of single-sperm cryopreservation in ICSI sensibly improved the fertilization rate and reduced the abortion rate, showing higher safety.
This study presents the interplay of flow and acoustics within tandem deep cavities, focusing on the resonance mechanism occurring between turbulent shear layers and acoustic eigenmodes. The arrangement inside the tandem deep cavities includes both close and remote configurations. A combined fully coupled and decoupled aeroacoustic simulation strategy was devised. Employing an advanced high-order spectral/hp element method in conjunction with implicit large eddy simulation, the nonlinear compressible Navier–Stokes equations were solved to acquire internal flow–acoustic resonant field. In parallel, the linearized Navier–Stokes equations were tackled to determine coherent shear layer perturbations with external acoustic forcing. Based on acoustic measurements, the mainstream Reynolds number approaches approximately $R{e_{in}} = {O}({10^5})$, where we identified the presence of frequency lock-in and a resonance range. Aeroacoustic noise sources were examined by implementing spectral proper orthogonal decomposition to decompose the pressure fields into hydrodynamic and acoustic components. As feedback intensified, the flow characteristics by the acoustic forcing effect and the flow-interactive effect were categorized according to the development of concurrent turbulent shear layers. Subsequently, the alternating and synchronous behaviours of concurrent shear layers resonated with the out-of-phase and in-phase acoustic eigenmodes were identified, and the corresponding large-scale counter-rotating vortex pairs and co-rotating vortex structures at the cavity entrances were extracted. The acoustic power generated by the Coriolis force was calculated using Howe's vortex-sound analogy, and the aeroacoustic energy transfer mechanism between large-scale shear layer vortices with acoustic eigenmodes was further explored. Finally, a linear response of coherent perturbations of the concurrent shear layers by external acoustic forcing was established. The amplification of flow in the streamwise direction toward the main duct led to the formation of coherent vortex structures, accompanied by separation bubbles into the main duct.
Head-up tilt test (HUTT) is an important tool in the diagnosis of pediatric vasovagal syncope. This research will explore the relationship between syncopal symptoms and HUTT modes in pediatric vasovagal syncope.
Methods:
A retrospective analysis was performed on the clinical data of 2513 children aged 3–18 years, who were diagnosed with vasovagal syncope, from Jan. 2001 to Dec. 2021 due to unexplained syncope or pre-syncope. The average age was 11.76 ± 2.83 years, including 1124 males and 1389 females. The patients were divided into the basic head-up tilt test (BHUT) group (596 patients) and the sublingual nitroglycerine head-up tilt test (SNHUT) group (1917 patients) according to the mode of positive HUTT at the time of confirmed pediatric vasovagal syncope.
Results:
(1) Baseline characteristics: Age, height, weight, heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), and composition ratio of syncope at baseline status were higher in the BHUT group than in the SNHUT group (all P < 0.05). (2) Univariate analysis: Age, height, weight, HR, SBP, DBP, and syncope were potential risk factors for BHUT positive (all P < 0.05). (3) Multivariate analysis: syncope was an independent risk factor for BHUT positive, with a probability increase of 121% compared to pre-syncope (P<0.001).
Conclusion:
The probability of BHUT positivity was significantly higher than SNHUT in pediatric vasovagal syncope with previous syncopal episodes.
Continuum robot has become a research hotspot due to its excellent dexterity, flexibility and applicability to constrained environments. However, the effective, secure and accurate path planning for the continuum robot remains a challenging issue, for that it is difficult to choose a suitable inverse kinematics solution due to its redundancy in the confined environment. This paper presents a collision-free path planning method based on the improved artificial potential field (APF) for the cable-driven continuum robot, in which the beetle antennae search algorithm is adopted to deal with the optimal problem of APF without the necessary for velocity kinematics. In addition, the local optimum problem of traditional APF is solved by the randomness of the antennae’s direction vector which can make the algorithm easily jump out of local minima. The simulation and experimental results verify the efficiency of the proposed path planning method.
Particle–wall interaction generates strong particle near-wall motion, including collision bounce and impact splashing. To distinguish the effect of particles and particle near-wall motions on the turbulent coherent structure, this study carried out three different cases of sand-laden two-phase flow measurements: a uniform sand release at the top, local-laying sand bed and global-laying sand bed (Liu et al., J. Fluid Mech., vol. 943, 2022, A8). Based on large field of view particle image velocimetry/particle tracking velocimetry measurements, we obtained the velocity field of a two-dimensional gas–solid two-phase dilute faction flow $(\varPhi _{v} \sim O(10^{-4}))$ with a friction Reynolds number $R e_{\tau }$ of 3950. Results indicate that particles weaken the high- and low-velocity iso-momentum zones and hairpin vortices, resulting in the increased length scale of the coherent structure. However, the collision bounce and impact splashing break up the inner iso-momentum zone and hairpin vortices while enhancing them in the outer region, thus reducing the structure scale. In addition, the upward-moving particles increase the large-scale structure inclination angle, while the downward-moving particles decrease it. The linear coherence spectrum analysis suggests that the particles themselves do not change the structural self-similarity, but their saltation motions disrupt the similarity of the near-wall structure, making the inclination angle decrease with the scale, and the generated ascending particles reduce the aspect ratio of the streamwise to wall-normal direction in the outer region.
Using the instrumental variable approach on nationally representative, individual-level data on middle-aged pension participants in China, this study quantifies the peer effect in the context of forming pension expectations. The study confirms the existence of the peer effect in forming pension expectations in the community. The probability of having optimistic pension expectations significantly increases by 0.309 percentage points if the proportion of optimists in the community increases by 1 percentage point. Moreover, the study explores the channels through which the peer effect operates and finds that the social learning channel dominates the social norms channel. The study also provides empirical evidence that village and township leaders as well as those with old pension program experience are opinion leaders in their peer group. Lastly, we find peer effects in other pension decisions, e.g., contribution size, and the contribution size increases by the proportion of optimists in the community. The study provides policy implications on ways to improve willingness to contribute to pension programs.
Based on 30 high-resolution U-Th dating controls, we reconstruct stalagmite δ18O records from 45 to 15 thousand years ago (ka B.P., before AD 1950) from the Shizhu Cave, which is located in southwestern China under the influence of both the Indian Summer Monsoon (ISM) and the East Asian Summer Monsoon (EASM). By integrating with the other stalagmite δ18O records in Asia during the middle to late last glacial, our results reveal two main moisture trajectories: one from the Indian Ocean, through the Shizhu Cave towards central China, and the other from the Pacific Ocean to central and northern China. The systematic decrease of the average values of stalagmite δ18O records from oceans to inland China reveals a spatial pattern of water vapour fractionation and moisture trajectory during the middle to late last glacial. In contrast, the variation amplitude, which is defined as the departures apart from the background δ18O records during Heinrich stadials 1 to 4 (HS1–HS4), show an increasing trend from the coastal oceans to mid-latitude inland China, presenting a ‘coastal-inland’ pattern, which can be interpreted by the enhanced East Asian Winter Monsoon (EAWM) and the weakened EASM. More specifically, the enriched stalagmite δ18O records in the EASM region during HS1 to HS4 are caused by the decreased summer rainfall amount or/and the increased proportion of summer moisture resources from the Pacific Ocean. These new observations deepen our understanding of the complicated stalagmite δ18O records in the EASM region.
In this paper, we consider the problem of contact parameters (slippage and sinkage) estimation for multi-modal robot locomotion on granular terrains. To describe the contact events in the same framework for robots operated at different modes (e.g., wheel, leg), we propose a unified description of contact parameters for multi-modal robots. We also provide a parameter estimation method for multi-modal robots based on CNN and DWT (discrete wavelet transformation) techniques and verify its effectiveness over different types of granular terrains. Besides motion modes, this paper also considers the influence of slope angles and the robot’s handing angles over contact parameters. Through comparison and analysis of the prediction results, our method can not only effectively predict the contact parameters of multi-modal robot locomotion on a granular medium (better than $96\%$ accuracy) but also achieves the same or better performance when compared to other (direct) contact measurement methods designed for individual motion modes, that is, single-modal robots such as quadruped robots and mars rovers. Our proposed unified contact parameter estimation method can be useful for studying the interaction mechanics between multi-modal robots and granular terrains as well as terrain classification tasks due to its superior sensitivity which is analyzed in the experiments.
This study reveals the competitive evolutionary process of the main driving factors in the early, middle and late stages of sandstorms, as shear turbulence becomes dominant and is then suppressed by enhanced thermal stability, based on quadrant analysis of the sand-laden turbulent wind field acquired from field observations over the entire sandstorm process. Moreover, the self-organized state of multiscale structures in the energy-containing region of the sand-laden turbulence is found to change significantly as the sandstorm develops. The logarithmic scaling law that governs the cumulative turbulent kinetic energy for the non-stationary flow in the early and late stages of the sandstorm is different from the existing theoretical formula. The corresponding rate of increase in the cumulative kinetic energy with increasing scale is much higher in these stages than in the middle stage of the sandstorm with steady flow. The change in self-organized state of turbulence is responsible for the flow acceleration and the thermal superimposed effect, rather than the addition of sand particles.
Childhood maltreatment is an established risk factor for psychopathology. However, it remains unclear how childhood traumatic events relate to mental health problems and how the brain is involved. This study examined the serial mediation effect of brain morphological alterations and emotion-/reward-related functions on linking the relationship from maltreatment to depression. We recruited 156 healthy adolescents and young adults and an additional sample of 31 adolescents with major depressive disorder for assessment of childhood maltreatment, depressive symptoms, cognitive reappraisal and anticipatory/consummatory pleasure. Structural MRI data were acquired to identify maltreatment-related cortical and subcortical morphological differences. The mediation models suggested that emotional maltreatment of abuse and neglect, was respectively associated with increased gray matter volume in the ventral striatum and greater thickness in the middle cingulate cortex. These structural alterations were further related to reduced anticipatory pleasure and disrupted cognitive reappraisal, which contributed to more severe depressive symptoms among healthy individuals. The above mediating effects were not replicated in our clinical group partly due to the small sample size. Preventative interventions can target emotional and reward systems to foster resilience and reduce the likelihood of future psychiatric disorders among individuals with a history of maltreatment.
Todorokite is a common Mn oxide (with a tunnel structure) in the Earth surface environment, and can be obtained by hydrothermal treatment or refluxing process from precursor buserite with a layered structure. Several chemical reaction conditions for the phase transformation from Na-buserite to todorokite at atmospheric pressure were investigated, including temperature, pH, crystallinity of precursor Na-buserite, the amount of the interlayer Mg2+ of the Mg-buserite and clay minerals. The results showed that the conversion rate and crystallinity of todorokite decreased with falling temperature, and Mg-buserite could not be completely transformed to todorokite at lower temperatures (40°C). The poorly crystalline Na-buserite could be converted into todorokite more easily than highly crystalline Na-buserite. Todorokite can be prepared at pH 5–9, but the rate of conversion and crystallinity of todorokite did vary with pH in the order: neutral ≈ alkali > acidic. The conversion rate of todorokite decreased with decreasing interlayer Mg2+ content of the Mg-buserite. The presence of montmorillonite or goethite slowed the formation reaction of todorokite in the refluxing process, and the reaction time was prolonged when the amounts of those minerals were increased.