We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Jeju Island, designated by UNESCO as a world heritage site, continues to face the anthropogenic pressures of reckless development for regional tourism and economic revitalization purposes. Because land use/land cover (LULC) affects ecosystem services and human well-being, it is crucial to comprehensively identify the causes of changes in LULC based on long-term analyses. This study examined LULC changes on Jeju Island over 47 years from 1973 to 2019 and quantified changes in four ecosystem services: habitat quality, carbon stock, water yield and cumulative viewshed. From 1973 to 1998, forest land increased from 22% to 56%, but these restoration efforts were conducted in grassland, reducing that land type from 42% to 17%. This process increased the areas of highest habitat quality from 68% to 73%, and carbon stock increased from 20 to 30 million tonnes. Between 1998 and 2009, the area of cropland more than doubled from 21% to 44%. As a result, the areas of highest habitat quality decreased from 73% to 49%, and carbon stock decreased from 3.0 million tonnes to 2.3 million tonnes. Our analysis could help stakeholders and policymakers to develop their management planning and improve ecosystem services through restoration and conservation policies on Jeju Island.
Many waterflooding oil fields, injecting water into an oil-bearing reservoir for pressure maintenance, are in their middle to late stages of development. To explore the geological conditions and improve oilfield recovery of the most important well group of the Hu 136 block, located on the border areas of three provinces (Henan, Shandong, and Hebei), Zhongyuan Oilfield, Sinopec, central China, a 14C cross-well tracer monitoring technology was developed and applied in monitoring the development status and recognize the heterogeneity of oil reservoirs. The tracer response in the production well was tracked, and the water drive speed, swept volume of the injection fluid were obtained. Finally, the reservoir heterogeneity characteristics, such as the dilution coefficient, porosity, permeability, and average pore-throat radius, were fitted according to the mathematical model of the heterogeneous multi-layer inter-well theory. The 14C-AMS technique developed in this work is expected to be a potential analytical method for evaluating underground reservoir characteristics and providing crucial scientific guidance for the mid to late oil field recovery process.
Nosocomial transmission of COVID-19 among immunocompromised hosts can have a serious impact on COVID-19 severity, underlying disease progression and SARS-CoV-2 transmission to other patients and healthcare workers within hospitals. We experienced a nosocomial outbreak of COVID-19 in the setting of a daycare unit for paediatric and young adult cancer patients. Between 9 and 18 November 2020, 473 individuals (181 patients, 247 caregivers/siblings and 45 staff members) were exposed to the index case, who was a nursing staff. Among them, three patients and four caregivers were infected. Two 5-year-old cancer patients with COVID-19 were not severely ill, but a 25-year-old cancer patient showed prolonged shedding of SARS-CoV-2 RNA for at least 12 weeks, which probably infected his mother at home approximately 7–8 weeks after the initial diagnosis. Except for this case, no secondary transmission was observed from the confirmed cases in either the hospital or the community. To conclude, in the day care setting of immunocompromised children and young adults, the rate of in-hospital transmission of SARS-CoV-2 was 1.6% when applying the stringent policy of infection prevention and control, including universal mask application and rapid and extensive contact investigation. Severely immunocompromised children/young adults with COVID-19 would have to be carefully managed after the mandatory isolation period while keeping the possibility of prolonged shedding of live virus in mind.
A high-order transition route from inertial to elasticity-dominated turbulence (EDT) in Taylor–Couette flows of polymeric solutions has been discovered via direct numerical simulations. This novel two-step transition route is realized by enhancing the extensional viscosity and hoop stresses of the polymeric solution via increasing the maximum chain extension at a fixed polymer concentration. Specifically, in the first step inertial turbulence is stabilized to a laminar flow much like the modulated wavy vortex flow. The second step destabilizes this laminar flow state to EDT, i.e. a spatially smooth and temporally random flow with a $-3.5$ scaling law of the energy spectrum reminiscent of elastic turbulence. The flow states involved are distinctly different to those observed in the reverse transition route from inertial turbulence via a relaminarization of the flow to elasto-inertial turbulence in parallel shear flows, underscoring the importance of polymer-induced hoop stresses in realizing EDT that are absent in parallel shear flows.
The flow physics of inertio-elastic turbulent Taylor–Couette flow for a radius ratio of $0.5$ in the Reynolds number ($Re$) range of $500$ to $8000$ is investigated via direct numerical simulation. It is shown that as $Re$ is increased the turbulence dynamics can be subdivided into two distinct regimes: (i) a low $Re \leqslant 1000$ regime where the flow physics is essentially dominated by nonlinear elastic forces and the main contribution to transport and mixing of momentum, stress and energy comes from large-scale flow structures in the bulk region and (ii) a high $Re \geqslant 5000$ regime where inertial forces govern the flow physics and the flow dynamics is mainly governed by small-scale flow structures in the near-wall region. Flow–microstructure coupling analysis reveals that the elastic Görtler instability in the near-wall region is triggered via significant polymer extension and commensurately high hoop stresses. This instability gives rise to small-scale elastic vortical structures identified as elastic Görtler vortices which are present at all $Re$ considered. In fact, these vortices develop herringbone streaks near the inner wall that have a longer average life span than their Newtonian counterparts due to their elastic origin. Examination of the budgets of mean streamwise enstrophy, mean kinetic energy, turbulent kinetic energy and Reynolds shear stress demonstrates that increasing fluid inertia hinders the generation of elastic stresses, leading to a monotonic reduction of the elastic-related effects on the flow physics.
Regional planning may help to ensure that the specific measures implemented as part of a national suicide prevention strategy are aligned with the varying needs of local services and communities; however, there are concerns that the reliability of local programme development may be limited in practice.
Aims
The potential impacts of independent regional planning on the effectiveness of suicide prevention programmes in the Australian state of New South Wales were quantified using a system dynamics model of mental health services provision and suicidal behaviour in each of the state's ten Primary Health Network (PHN) catchments.
Method
Reductions in projected suicide mortality over the period 2021–2031 were calculated for scenarios in which combinations of four and five suicide prevention and mental health services interventions (selected from 13 possible interventions) are implemented separately in each PHN catchment. State-level impacts were estimated by summing reductions in projected suicide mortality for each intervention combination across PHN catchments.
Results
The most effective state-level combinations of four and five interventions prevent, respectively, 20.3% and 22.9% of 10 312 suicides projected under a business-as-usual scenario (i.e. no new policies or programmes, constant services capacity growth). Projected numbers of suicides under the optimal intervention scenarios for each PHN are up to 6% lower than corresponding numbers of suicides projected for the optimal state-level intervention combinations.
Conclusions
Regional suicide prevention planning may contribute to significant reductions in suicide mortality where local health authorities are provided with the necessary resources and tools to support reliable, evidence-based decision-making.
The aim of this study was to explore the effects and mechanisms of different starvation treatments on the compensatory growth of Acipenser dabryanus. A total of 120 fish (60·532 (sem 0·284) g) were randomly assigned to four groups (fasting 0, 3, 7 or 14 d and then refed for 14 d). During fasting, middle body weight decreased significantly with prolonged starvation. The whole-body and muscle composition, serum biochemical indexes, visceral indexes and digestive enzyme activities had been effected with varying degrees of changes. The growth hormone (GH) level in serum was significantly increased in 14D; however, insulin-like growth factor-1 (IGF-1) showed the opposite trend. The neuropeptide Y (npy) mRNA level in brain was significantly improved in 7D; peptide YY (pyy) mRNA level in intestine was significantly decreased during fasting. After refeeding, the final body weight, percentage weight gain, specific growth rate, feed intake, feed efficiency and protein efficiency ratio showed no difference between 0D and 3D. The changes of whole-body and muscle composition, serum biochemical indexes, visceral indexes and digestive enzyme activities had taken place in varying degrees. GH levels in 3D and 7D were significantly higher than those in the 0D; the IGF-1 content decreased significantly during refeeding. There was no significant difference in npy and pyy mRNA levels. These results indicated that short-term fasting followed by refeeding resulted in full compensation and the physiological and biochemical effects on A. dabryanus were the lowest after 3 d of starvation and 14 d of refeeding. Additionally, compensation in A. dabryanus may be mediated by appetite genes and GH, and the degree of compensation is also affected by the duration of starvation.
Predictors of compliance with aspirin in children following cardiac catheterisation have not been identified. The aim of this study is to identify the caregivers’ knowledge, compliance with aspirin medication, and predictors of compliance with aspirin in children with Congenital Heart Disease (CHD) post-percutaneous transcatheter occlusion.
Methods:
A cross-sectional explorative design was adopted using a self-administered questionnaire and conducted between May 2017 and May 2018. Recruited were 220 caregivers of children with CHD post-percutaneous transcatheter occlusion. Questionnaires included child and caregivers’ characteristics, a self-designed and tested knowledge about aspirin scale (scoring scale 0–2), and the 8-item Morisky Medication Adherence Scale (scoring scale 0–8). Data were analysed using multivariate binary logistic regression analysis to identify predictors of compliance with aspirin.
Results:
Of the 220 eligible children and caregivers, 210 (95.5%) responded and 209 surveys were included in the analysis. The mean score of knowledge was 7.25 (standard deviation 2.27). The mean score of compliance was 5.65 (standard deviation 1.36). Child’s age, length of aspirin use, health insurance policies, relationship to child, monthly income, and knowledge about aspirin of caregivers were independent predictors of compliance with aspirin (p < 0.05).
Conclusion:
Caregivers of children with CHD had an adequate level of knowledge about aspirin. Compliance to aspirin medication reported by caregivers was low. Predictors of medium to high compliance with aspirin were related to the child’s age and socio-economic reasons. Further studies are needed to identify effective strategies to improve knowledge, compliance with medication, and long-term outcomes of children with CHD.
We report our experience with an emergency room (ER) shutdown related to an accidental exposure to a patient with coronavirus disease 2019 (COVID-19) who had not been isolated.
Setting:
A 635-bed, tertiary-care hospital in Daegu, South Korea.
Methods:
To prevent nosocomial transmission of the disease, we subsequently isolated patients with suspected symptoms, relevant radiographic findings, or epidemiology. Severe acute respiratory coronavirus 2 (SARS-CoV-2) reverse-transcriptase polymerase chain reaction assays (RT-PCR) were performed for most patients requiring hospitalization. A universal mask policy and comprehensive use of personal protective equipment (PPE) were implemented. We analyzed effects of these interventions.
Results:
From the pre-shutdown period (February 10–25, 2020) to the post-shutdown period (February 28 to March 16, 2020), the mean hourly turnaround time decreased from 23:31 ±6:43 hours to 9:27 ±3:41 hours (P < .001). As a result, the proportion of the patients tested increased from 5.8% (N=1,037) to 64.6% (N=690) (P < .001) and the average number of tests per day increased from 3.8±4.3 to 24.7±5.0 (P < .001). All 23 patients with COVID-19 in the post-shutdown period were isolated in the ER without any problematic accidental exposure or nosocomial transmission. After the shutdown, several metrics increased. The median duration of stay in the ER among hospitalized patients increased from 4:30 hours (interquartile range [IQR], 2:17–9:48) to 14:33 hours (IQR, 6:55–24:50) (P < .001). Rates of intensive care unit admissions increased from 1.4% to 2.9% (P = .023), and mortality increased from 0.9% to 3.0% (P = .001).
Conclusions:
Problematic accidental exposure and nosocomial transmission of COVID-19 can be successfully prevented through active isolation and surveillance policies and comprehensive PPE use despite longer ER stays and the presence of more severely ill patients during a severe COVID-19 outbreak.
To identify the association of the glucokinase gene (GCK) rs4607517 polymorphism with gestational diabetes mellitus (GDM) and determine whether sweets consumption could interact with the polymorphism on GDM in Chinese women.
Design:
We conducted a case–control study at a hospital including 1015 participants (562 GDM cases and 453 controls). We collected the data of pre-pregnancy BMI, sweets consumption and performed genotyping of the GCK rs4607517 polymorphism. Logistic regression was performed to test the association between the rs4607517 polymorphism and GDM, and the stratified analyses by sweets consumption were conducted, using an additive genetic model.
Setting:
A case–control study of women at a hospital in Beijing, China.
Participants
One thousand and fifteen Chinese women.
Results:
The GCK rs4607517 A allele was significantly associated with GDM (OR 1·35, 95 % CI 1·03, 1·77; P = 0·028). Furthermore, stratified analyses showed that the A allele increased the risk of GDM only in women who had a habitual consumption of sweet foods (sweets consumption ≥ once per week) (OR 1·61, 95 % CI 1·17, 2·21; P = 0·003). Significant interaction on GDM was found between the rs4607517 A allele and sweets consumption (P = 0·004).
Conclusions:
This study for the first time reported the interaction between the GCK rs4607517 polymorphism and sweets consumption on GDM. The results provided novel evidence for risk assessment and personalised prevention of GDM.
Early consciousness recovery after cardiac arrest (CA) is one of the most explicit and self-evident prognostic factors for clinical outcomes. We aimed to evaluate the prognostic value of electroencephalography (EEG) phenotypes according to the American Clinical Neurophysiology Society’s Critical Care EEG classification for predicting early recovery after CA.
Methods:
Consecutive patients admitted to the ICU after CA were enrolled. We analyzed Glasgow Coma Scale (GCS) score within 10 days after CA and evaluated mortality within 28 days according to EEG pattern subtype.
Results:
Among the total of 71 patients, 9 had periodic discharges (PDs) EEG pattern, 4 had rhythmic delta activity (RDA), 8 had spike-and-wave (SW), 22 had low voltage, 5 had burst suppression, and 23 had other EEG patterns. Initial GCS scores, GCS scores 3 days after CA (or 3 days after targeted temperature management [TTM]), and 10 days after CA (or 10 days after TTM) were significantly different among EEG subtypes (p < 0.001, respectively) (Table 2). GCS scores were significantly higher in RDA and the other EEG group compared to the PDs, SW, low voltage, and burst suppression groups (p < 0.001). Significant group × time interactions were observed for the follow-up period between EEG phenotypes (p < 0.001) demonstrating the most increase in the other EEG pattern group.
Conclusions:
Consciousness states were significantly worse in the PDs, SW, burst suppression, and low-voltage groups compared to the RDA and the other EEG pattern within 10 days after CA. The degree of consciousness recovery differed significantly by EEG pattern subtype within 10 days.
We aimed to evaluate the relationship of plasma Mg with the risk of new-onset hyperuricaemia and examine any possible effect modifiers in hypertensive patients. This is a post hoc analysis of the Uric acid (UA) Sub-study of the China Stroke Primary Prevention Trial (CSPPT). A total of 1685 participants were included in the present study. The main outcome was new-onset hyperuricaemia defined as a UA concentration ≥417 μmol/l in men or ≥357 μmol/l in women. The secondary outcome was a change in UA concentration defined as UA at the exit visit minus that at baseline. During a median follow-up duration of 4·3 years, new-onset hyperuricaemia occurred in 290 (17·2 %) participants. There was a significantly inverse relation of plasma Mg with the risk of new-onset hyperuricaemia (per sd increment; OR 0·85; 95 % CI 0·74, 0·99) and change in UA levels (per sd increment; β −3·96 μmol/l; 95 % CI −7·14, −0·79). Consistently, when plasma Mg was analysed as tertiles, a significantly lower risk of new-onset hyperuricaemia (OR 0·67; 95 % CI 0·48, 0·95) and less increase in UA levels (β −8·35 μmol/l; 95 % CI −16·12, −0·58) were found among participants in tertile 3 (≥885·5 μmol/l) compared with those in tertile 1 (<818·9 μmol/l). Similar trends were found in males and females. Higher plasma Mg levels were associated with a decreased risk of new-onset hyperuricaemia in hypertensive adults.
We report direct numerical simulation results that clearly elucidate the mechanism that leads to curvature dependence of drag enhancement (DE) in viscoelastic turbulent Taylor–Couette flow. Change in the angular momentum transport and its inherent link to transitions in vortical flow structures have been explored to depict the influence of the curvature of the flow geometry on DE. Specifically, it has been demonstrated that a transition in vortical structures with increasing radius ratio leads to weakening and elimination of the small-scale Görtler vortices and development and better organization (occupying the entire gap) of large-scale Taylor vortices as also evinced by the patterns of angular momentum current. The commensurate change in DE and its underlying mechanism are examined by contributions of convective flux and polymeric stress to the angular momentum current. The present finding paves the way for capturing highly localized elastic turbulence structures in direct numerical simulation by increasing geometry curvature in traditional turbulent curvilinear flows.
We aimed to investigate the association between plasma retinol and incident cancer among Chinese hypertensive adults. We conducted a nested case–control study, including 231 patients with incident cancer and 231 matched controls during a median 4·5-year follow-up of the China Stroke Primary Prevention Trial. There was a significant, inverse association between retinol levels and digestive system cancer (per 10 μg/dl increases: OR 0·79; 95 % CI 0·69, 0·91). When compared with participants in the first quartile of retinol (< 52·3 μg/dl), a significantly lower cancer risk was found in participants in quartile 2–4 ( ≥ 52·3 μg/dl: OR 0·31; 95 % CI 0·13, 0·71). However, there was a U-shaped association between retinol levels and non-digestive system cancers where the risk of cancers decreased (although not significantly) with each increment of plasma retinol (per 10 μg/dl increases: OR 0·89; 95 % CI 0·60, 1·31) in participants with retinol < 68·2 μg/dl, and then increased significantly with retinol (per 10 μg/dl increase: OR 1·65; 95 % CI 1·12, 2·44) in participants with retinol ≥ 68·2 μg/dl. In conclusion, there was a significant inverse dose–response association between plasma retinol and the risk of digestive system cancers. However, a U-shaped association was observed between plasma retinol and the risk of non-digestive cancers (with a turning point approximately 68·2 μg/dl).
AlMgB14–TiB2 ceramic was successfully brazed to TC4 alloy with inactive AgCu filler alloy. X-ray diffractometer, SEM, and energy-dispersive spectrometer were used to study interfacial microstructure and shear strength of the joints under different brazing temperatures. The results indicated that the typical microstructure of the TC4/AlMgB14–TiB2 joint was TC4/Ti(s.s) + Ti2Cu/Ti2Cu/TiCu/TiCu2Al/Ag(s.s) + Cu(s.s)/TiB whiskers/TiB2 reaction layer/AMBT. By increasing the brazing temperature, the thickness of the TC4 diffusion layer was improved, whereas that of the brazing seam decreased remarkably. When the brazing temperature was increased to 880 °C, the brazing seam was composed of Ti–Cu intermetallic Ag(s.s) with a few Cu(s.s), TiCu2Al distributed. Meanwhile, the formation of a continuous TiB2 reaction layer at the interface of the AMBT and brazing filler facilitated the improvement of joint shear strength. The joint with the maximum shear strength of 46.7 MPa was obtained while brazing at 880 °C for 10 min.
In Democratic People's Republic of Korea, only Plasmodium vivax malaria is prevalent, which is divided into two forms – long incubation form and short form. Among malaria cases reported in a year, long form accounts for 69% and short form 31%. Incubation period of short form ranges from 10 to 29 days (average 17 days) and long from 5·5 to 16 months (average 8–13 months). The most relapses (90%) were reported from May to September – malaria transmission season in the country. Result from preliminary mass chemoprevention in small size of population before transmission season to find appropriate method showed high protective efficacy in two regimens – one regimen given primaquine 0·25 mg base kg−1 day−1 for 14 days (95%) and another 0·5 mg base kg−1 day−1 for 7 days (94%). During the mass chemoprevention with primaquine, some adverse effects were reported but transient. We consider that mass chemoprevention with primaquine before transmission season is of great significance in disturbing the vivax malaria transmission, in which long incubation form is predominant in countries prevailing seasonal malaria.
The lichen family Ophioparmaceae contains three genera: Boreoplaca, Hypocenomyce and Ophioparma. The genus Hypocenomyce is reported here for the first time for China, being represented by the species Hypocenomyce scalaris which is distributed in south-western China. For the genus Ophioparma, one new species is described in this paper, namely Ophioparma pruinosa Li S. Wang & Y. Y. Zhang sp. nov., which is characterized by a pruinose thallus and the presence of usnic acid. Ophioparma araucariae is also reported as new for the Chinese lichen biota. Previous reports of O. lapponica in China are recognized as misidentifications of O. ventosa. Descriptions, keys and phylograms are provided for these species.
We aimed to assess shared genetic correlations of depressive and anxiety symptoms with concurrent and future estimated cardiovascular risk (CVR) score in Korean twins and family members. For the relationship with Adult Treatment Panel III CVR estimate in subjects aged 30–74 years (n = 1,059, baseline and follow-up after 3.2 ± 1.2 years), Center for Epidemiological Studies Depression Scale (CES-D) and state and trait anxiety inventory (SAI and TAI) were measured at baseline. A mixed linear model for CVR scores at baseline and follow-up was applied to include depressive and anxiety symptoms, twin and family effects, income, education, alcohol use, exercise, body mass index, and baseline CVR score for follow-up analysis. Higher CES-D scores were associated with higher CVR score at baseline in men, while higher TAI score was associated with higher CVR score at follow-up in women. Heritabilities were 0.245~0.326 for CVR score, 0.320 for CES-D score, 0.367 for TAI score, and 0.482 for SAI score. There were significant common genetic correlations in the relationships of CES-D, TAI, and SAI scores with CVR scores at baseline and follow-up (after adjusting for baseline CV risk score). Shared common environmental correlations were observed in the relationships of CES-D and SAI scores with CVR score at baseline; and SAI score with CVR score at follow-up. In the within-monozygotic twin analysis, there were no associations between CES-D, TAI, and SAI scores, and CVR score. In conclusion, shared genetic and environmental influences were observed in the relationship between depressive and anxiety symptoms with concurrent and future CVR estimates.
Neuroticism, a ‘Big Five’ personality trait, has been associated with sub-clinical traits of both autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD). The objective of the current study was to examine whether causal overlap between ASD and ADHD traits can be accounted for by genetic and environmental risk factors that are shared with neuroticism. We performed twin-based structural equation modeling using self-report data from 12 items of the Neo Five-Factor Inventory Neuroticism domain, 11 Social Responsiveness Scale items, and 12 Adult ADHD Self-Report Scale items obtained from 3,170 young adult Australian individual twins (1,081 complete pairs). Univariate analysis for neuroticism, ASD, and ADHD traits suggested that the most parsimonious models were those with additive genetic and unique environmental components, without sex limitation effects. Heritability of neuroticism, ASD, and ADHD traits, as measured by these methods, was moderate (between 40% and 45% for each respective trait). In a trivariate model, we observed moderate phenotypic (between 0.45 and 0.62), genetic (between 0.56 and 0.71), and unique environmental correlations (between 0.37and 0.55) among neuroticism, ASD, and ADHD traits, with the highest value for the shared genetic influence between neuroticism and self-reported ASD traits (rg = 0.71). Together, our results suggest that in young adults, genetic, and unique environmental risk factors indexed by neuroticism overlap with those that are shared by ASD and ADHD.
The shear-band propagation in bulk metallic glasses (BMGs) during deformation plays a key role in determining their macroscopic ductility. In this work, the shear band propagation during plastic deformation was investigated in the Cu46Zr46Al8 BMG and its in situ or ex situ prepared BMG composites. Compared with the brittle BMG, both types of ductile BMG composites show a more stable shear banding behavior as revealed by a larger power-law scaling exponent obtained from statistical analysis of serrations recorded in compressive curves. A higher cut-off elastic energy density (δc) linked with the multiplication of shear bands is observed for the in situ prepared BMG composites. However, the ex situ fabricated BMG composites show an almost equivalent or slightly larger δc since the dominant shear band but not multiple shear bands mainly governs their deformation. Such observations imply that the shear banding stability of BMGs during deformation is enhanced not only by inducing multiple shear bands but also by obstructing the movement of the dominant shear band at its driven path.