We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Barnyardgrass [Echinochloa crus-galli (L.) P. Beauv.] is acknowledged to be the most troublesome weed in rice fields in Anhui and Jiangsu provinces of China. It cannot be effectively controlled using certain acetolactate synthase (ALS)-inhibiting herbicides, including penoxsulam. Echinochloa crus-galli samples with suspected resistance to penoxsulam were collected to identify the target site–based mechanism underlying this resistance. Populations AXXZ-2 and JNRG-2 showed 33- and 7.3-fold resistance to penoxsulam, respectively, compared with the susceptible JLGY-3 population. Cross-resistance to other ALS inhibitors was reported in AXXZ-2 but not in JNRG-2, and occasionally showed higher sensitivity than JLGY-3. In vitro ALS activity assays revealed that penoxsulam concentrations required to inhibit 50% of ALS activity were 11 and 5.2 times greater in AXXZ-2 and JNRG-2, respectively, than in JLGY-3. DNA and predicted amino acid sequence analyses of ALS revealed Ala-205-Val and Ala-122-Gly substitutions in AXXZ-2 and JNRG-2, respectively. Our results indicate that these substitutions in ALS are at least partially responsible for resistance to penoxsulam.
Mammalian neonates undergo rapid transitions from a sterile uterine environment with a continuous intravenous supply of nutrients to a microbe-rich environment with intermittent ingesting of colostrum/milk via the gut. Currently, little is known about the colostrum-induced alterations of intestinal mucosal proteins in piglets with intra-uterine growth restriction (IUGR). In this study, we sought to investigate the innate differences and effects of colostrum on alterations in small-intestinal proteomes of IUGR piglets. Two IUGR (approximately 0·9 kg) and two normal-birth weight (NBW; approximately 1·3 kg) piglets were obtained from each of six sows at birth. One half (n 12; 6 IUGR v. 6 NBW) of the selected newborn piglets were killed to obtain jejunum samples, and the other half (n 12; 6 IUGR v. 6 NBW) of the newborn piglets were allowed to suckle colostrum from their own mothers for 24 h before jejunum sample collection. On the basis of proteomic analysis, we identified thirty-one differentially expressed proteins in the jejunal mucosa between IUGR and normal neonates before or after colostrum consumption. The intestinal proteins altered by colostrum feeding play important roles in the following: (1) increasing intestinal integrity, transport of nutrients, energy metabolism, protein synthesis, immune response and, therefore, cell proliferation; and (2) decreasing oxidative stress, and therefore cell apoptosis, in IUGR neonates. However, colostrum only partially ameliorated the inferior status of the jejunal mucosa in IUGR neonates. These findings provide the first evidence in intestinal protein alterations of IUGR neonates in response to colostrum ingestion, and thus render new insights into the mechanisms responsible for impaired growth in IUGR neonates and into new nutritional intervention strategies.
In this paper we are interested in a sharp result about the global existence and blowup of solutions to a class of pseudo-parabolic equations. First, we represent a unique local weak solution in a new integral form that does not depend on any semigroup. Second, with the help of the Nehari manifold related to the stationary equation, we separate the whole space into two components S+ and S– via a new method, then a sufficient and necessary condition under which the weak solution blows up is established, that is, a weak solution blows up at a finite time if and only if the initial data belongs to S–. Furthermore, we study the decay behaviour of both the solution and the energy functional, and the decay ratios are given specifically.
The development of highly efficient and stable inexpensive catalysts for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) by NaBH4 in an aqueous solution by utilizing metal-organic frameworks (MOFs) as precursor and template remains a hot topic. Herein, a simple self-template strategy was developed to synthesize a porous nitrogen-doped carbon frameworks embedded with zinc and cobalt nanoparticles (Zn0.3Co2.7@NC) catalyst by thermal annealing of the bimetallic zinc-cobalt zeolitic imidazolate framework (Zn0.3Co2.7-ZIF) as an effective precursor and template. The resulting Zn0.3Co2.7@NC catalysts show an excellent catalytic activity for the reduction of 4-NP and the reduction reaction was completed only in 5 min with nearly 100% conversion. The apparent rate constant for the reaction of 4-NP reduction was estimated to be 0.683 min−1. Moreover, the catalyst was extended to reduce other nitro compounds and exhibited excellent catalytic activity. When compared to other related catalysts in the literature, the catalytic activity of catalyst is superior. Therefore, the resulting Zn0.3Co2.7@NC is expected to get more extensive application in the field of catalysis.
A research was carried out to investigate the microstructures and mechanical properties of high Mn containing Al–5Mg–Mn alloys cast under near-rapid cooling. The results indicated that the mechanical properties of the hot bands and cold rolled sheets were remarkably improved with Mn content increasing to 1.6 wt%. The near-rapid cooling process greatly refined the intermetallic constituents. The intermetallic Al6(Fe,Mn) particles found in the hot bands were rare and small when the content of Mn was hypoeutectic. In the samples with higher Fe and Si content, a large amount of Al6(Fe,Mn) and Mg2Si particles remained in the hot bands. But the hot bands still showed better mechanical properties due to the refinement of the intermetallic constituents by the near-rapid cooling process. The results were of commercial interest to the production of AA5083 alloy via continuous strip casting process.
Three-dimensional (3D) density distribution of inhomogeneous dense deuterium tritium plasmas in laser fusion is revealed by the energy loss of fast protons going through the plasmas. The fast protons generated in the laser–plasma interaction can be used for the simulation of a plasma density diagnostics. The large linear and ill-posed equation set of the densities of all grids is obtained and then solved by the Tikhonov regularization method after dividing a 3D area into grids and knowing the initial and final energies of the protons. 3D density reconstructions with six proton sources are done without and with random noises added to the final energy. The revealed density is a little smaller than the simulated one in most simulated zones and the error is as much as those of 2D reconstructions with four proton sources. The picture element N is chosen as 2744 with consideration of smoothness and calculation memory of the computers. With fast calculation speed and low error, the Tikhonov regularization method is more suitable for 3D density reconstructions with large calculation amount than simultaneous iterative reconstruction method. Also the analytical expressions between the errors and the noises are established. Furthermore, the density reconstruction method in this paper is particularly suitable for plasmas with small density gradient. The errors without noises and with 2% noises added to the final proton energies are 3 and 20%, respectively, for the homogeneous plasma.
We report on the occurrence of sinter-hardening with concurrent improved plasticity in fine-grained Fe79.3Mo4.5P8.1C6.75B1.35 bulk alloys fabricated by spark plasma sintering (SPS) of metallic glass composite powder. When the sintering temperature is higher than the austenite transformation temperature, the as-fabricated bulk alloys are composed of expected wattle martensite plus Fe3P, Fe7C3, and Fe3Mo3C. Meanwhile, the martensite-containing bulk alloys exhibit increased hardness, fracture strength as well as concurrent improved plasticity. The fracture stress and strain of the martensite-containing bulk alloys are as high as 2573 MPa and 8.6%, respectively. The formation of the martensite microstructure is attributed to that high sintering temperature leads to the austenitization transformation and consequently formed austenite partially transforms into martensite under rapid cooling rate provided by SPS system. The results obtained provide insight into fabrication of iron alloys with good mechanical property by powder metallurgy.
Blue and Green long-persistent luminescence materials have been fully developed, and are well featured in production and application. However, long-wavelength emitting materials are very rare relatively. This paper presents some work from our laboratory on the recent progress in long-wavelength emitting long-persistent luminescence materials: Sr3Al2O5Cl2: Eu2+, Tm3+, Sr2SnO4: Sm3+ and Ca2BO3Cl: Eu2+, Dy3+. The initial intensity of Sr3Al2O5Cl2: Eu2+, Tm3+ can reach nearly 5000 mcd/m2 and its afterglow can last about 220 min at recognizable intensity level. Sr2SnO4: Sm3+ has a red emission and its afterglow time of which sintered in vacuum atmosphere increased substantially. With optimum doping concentration and sufficient excitation with UV light, the yellow afterglow of Ca2BO3Cl: Eu2+, Dy3+ can persist over 48 h.
The hot water tail-flick test is widely used to measure the degree of nociception experienced by laboratory animals. This study was carried out to optimise interval times for the hot water immersion tail-flick tests in rats.
Method
Ten different intervals from 10 s to 1 h were tested in 60 Sprague–Dawley male rats. At least eight rats were tested for each interval in three consecutive hot water tail-flick tests. Dixon's up-and-down method was also used to find the optimal intervals. The same rats were then divided into two groups. In Group N, naloxone was injected to reverse the prolonged latency times, whereas saline was used in the control Group S.
Results
Intervals of 10 s, 20 s, 30 min and 1 h did not significantly impact latencies, yielding similar results in three consecutive tests (p > 0.05). However, interval times of between 30 s and 20 min, inclusively, caused significantly prolonged latencies in the second and third tests (p < 0.001). Dixon's up-and-down method showed that 95% of the rats had prolonged latencies in hot water tail-flick tests at intervals longer than 32 s. Naloxone reversed prolonged latencies in Group N, whereas the latencies in Group S were further prolonged in 5 min interval tests.
Conclusion
The optimal intervals for hot water tail-flick tests are either shorter than 20 s or longer than 20 min. The prolonged latencies after repetitive tests were attributable to an endocrine opioid.
Near-infrared quantum cutting involving the conversion of one visible photon into two near-infrared photons was demonstrated in Ca0.99−xYbxWO4: Tb0.01 phosphors. From the analysis of the refinement of x-ray diffraction patterns, the suitable concentration range of Yb3+ in Ca0.99WO4: 0.01Tb3+ was determined to be 0–20%. By investigating their luminescent spectra and decay lifetimes, second-order downconversion from Tb3+ to Yb3+ were proved and the possible quantum cutting mechanism was proposed. Quantum efficiency related to Yb3+ concentration was calculated and the maximum efficiency was reached at 140.4%. Because the energy of Yb3 + 2F7/2 → 2F5/2 transition matches well with the band gap of the crystalline Si, the Ca0.99−xYbxWO4: Tb0.01 phosphors could be potentially applied in silicon-based solar cells.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.