We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper exploited an alternative approach to prepare high-quality speckle patterns by uniformly dispersing nano-silica particles onto sample surfaces, helping digital image correlation (DIC) acquire the maximum spatial resolution of local strain up to 92 nm. A case study was carried out by combining this speckle pattern fabrication method with SEM-DIC and electron backscattering diffraction (EBSD). Thus, in situ mapping of local strain with ultra-high spatial resolution and microstructure in commercially pure titanium during plastic deformation could be achieved, which favored revealing the effect of slip transfer on shear strain near grain boundaries. Moreover, the slip systems could be easily identified via the combination of the SEM-DIC and EBSD techniques even though no obvious deformation trace was captured in secondary electron images. Additionally, the complex geometric compatibility factor $( {m}^{\prime}_c)$ relating to geometric compatibility factors (mʹ) and Schmid factors was proposed to predict the shear strain (εxy) at grain boundaries.
Subthreshold depression (sD) negatively impacts well-being and psychosocial function and is more prevalent compared with major depressive disorder (MDD). However, as adults with sD are less likely to seek face-to-face intervention, internet-based cognitive-behavioral therapy (ICBT) may overcome barriers of accessibility to psychotherapy. Although several trials explored the efficacy of ICBT for sD, the results remain inconsistent. This study evaluated whether ICBT is effective in reducing depressive symptoms among Chinese adults with sD.
Methods
A randomized controlled trial was performed. The participants were randomly assigned to 5 weeks of ICBT, group-based face-to-face cognitive-behavioral therapy (CBT), or a waiting list (WL). Assessments were conducted at baseline, post-intervention and at a 6-month follow-up. The primary outcome measured depressive symptoms using the Center for Epidemiological Studies Depression Scale (CES-D). Outcomes were analyzed using a mixed-effects model to assess the effects of ICBT.
Results
ICBT participants reported greater reductions on all the outcomes compared to the WL group at post-intervention. The ICBT group showed larger improvement on the Patient Health Questionnaire-9 (PHQ-9) at post-intervention (d = 0.12) and at follow-up (d = 0.10), and with CES-D at post-intervention (d = 0.06), compared to the CBT group.
Conclusions
ICBT is effective in reducing depressive symptoms among Chinese adults with sD, and improvements in outcomes were sustained at a 6-month follow-up. Considering the low rates of face-to-face psychotherapy, our findings highlight the considerable potential and implications for the Chinese government to promote the use of ICBT for sD in China.
This study aims to explore clinicians’ practices and attitudes regarding advance care planning (ACP) in mainland China.
Methods
This study was a multicenter cross-sectional survey. Clinicians from tertiary hospitals in Beijing, Guangxi, and Inner Mongolia were invited to participate in the study. A questionnaire was formulated based on related literature to obtain information including demographic characteristics, and practices and attitudes toward ACP.
Results
The total number of participants included 285 clinicians. The data response rate was 84.57%. Most of the clinicians had an inadequate understanding of ACP. Only a few clinicians had experience in participating or witnessing an ACP or related end-of-life discussions. Among 285 clinicians, 69.82% of clinicians were willing to introduce ACP to patients. Two hundred and thirty-eight (83.51%) clinicians wanted more education on ACP. Almost all clinicians believed that patients had the right to know about their diagnosis, prognosis, and available care options. Most clinicians (82.11%) regarded that ACP was partially feasible in mainland China. If clinicians had a serious illness, almost everyone was willing to find out their true health status and decide for themselves, and 81.40% wanted to institute an ACP for themselves. The biggest barriers to the use of ACP in mainland China were cultural factors. Statistical analysis revealed that some or good understanding level (P = 0.0052) and practical experience (P = 0.0127) of ACP were associated with the positive willingness.
Significance of results
ACP is still in its infancy in mainland China. Clinicians had inadequate understanding and minimal exposure to ACP. Most clinicians recognized the value and significance of ACP and had a positive attitude toward ACP. Clinicians need to be provided with education and training to promote their ACP practices. Culturally appropriate ACP processes and documents need to be developed based on Chinese culture and Chinese needs.
The density–depth relationship of the Antarctic ice sheet is important for establishing a high-precision surface mass balance model and predicting future ice-sheet contributions to global sea levels. A new algorithm is used to reconstruct firn density and densification rate by inverting monostatic radio wave echoes from ground-operated frequency-modulated continuous wave radar data collected near four ice cores along the transect from Zhongshan Station to Dome A. The inverted density profile is consistent with the core data within 5.54% root mean square error. Due to snow redistribution, the densification rate within 88 km of ice core DT401 is correlated with the accumulation rate and varies greatly over horizontal distances of <5 km. That is, the depth at which a critical density of 830 kg m−3 is reached decreases and densification rate increases in high-accumulation regions but decreases in low-accumulation regions. This inversion technique can be used to analyse more Antarctic radar data and obtain the density distribution trend, which can improve the accuracy of mass-balance estimations.
In this paper, a miniaturized tri-band bandpass microstrip filter using stub loaded rectangular ring resonator (SLRRR),shorted stub loaded stepped impedance resonators (SSLSIR), and stepped impedance resonators (SIR) with sharp skirts is presented. Two SSLSIRs are embedded paralleled inside SLRRR to generate a quasi-elliptic response at second and third passband. The odd-even fundamental resonant mode and first high-order resonant mode of the SIRs are exploited to generate tri-band response. Three bandwidths can be controlled independently due to different signal paths. Extra transmission zeros are introduced by the configuration of 0° feed structure. Sharp skirts are achieved at the upper edge of each passband by λg/4 lines which are loaded at the I/O ports. An example of the proposed tri-band filter operating at 2.76 GHz/5.7 GHz/7.63 GHz for TDD-LTE/WLAN/VSAT applications is implemented and fabricated. The simulation and measurement show a good agreement.
Due to the drastic surge of COVID-19 patients, many countries are considering or already graduating health professional students early to aid professional resources. We aimed to assess outbreak-related psychological distress and symptoms of acute stress reaction (ASR) in health professional students and to characterize individuals with potential need for interventions.
Methods
We conducted a prospective cohort study of 1442 health professional students at Sichuan University, China. At baseline (October 2019), participants were assessed for childhood adversity, stressful life events, internet addiction, and family functioning. Using multivariable logistic regression, we examined associations of the above exposures with subsequent psychological distress and ASR in response to the outbreak.
Results
Three hundred and eighty-four (26.63%) participants demonstrated clinically significant psychological distress, while 160 (11.10%) met the criterion for a probable ASR. Individuals who scored high on both childhood adversity and stressful life event experiences during the past year were at increased risks of both distress (ORs 2.00–2.66) and probable ASR (ORs 2.23–3.10), respectively. Moreover, internet addiction was associated with elevated risks of distress (OR 2.05, 95% CI 1.60–2.64) and probable ASR (OR 2.15, 95% CI 1.50–3.10). By contrast, good family functioning was associated with decreased risks of distress (OR 0.43, 95% CI 0.33–0.55) and probable ASR (OR 0.48, 95% CI 0.33–0.69). All associations were independent of baseline psychological distress.
Conclusions
Our findings suggest that COVID-19 related psychological distress and high symptoms burden of ASR are common among health professional students. Extended family and professional support should be considered for vulnerable individuals during these unprecedented times.
To improve the corrosion resistance and to increase the hardness of copper substrate in marine environment, the Cu-Ni/Ni-P composite coatings were prepared on the copper substrate using the galvanostatic electrolytic deposition method. The deposition current densities were explored to find the optimized deposition conditions for forming the composite coatings. Corrosion resistance properties were analyzed using the polarization curves and electrochemical impedance spectroscopy (EIS). Considering the corrosion resistance and hardness, the −20 mA/cm2 was selected to deposit Cu-Ni coatings on copper substrate and the −30 mA/cm2 was selected to deposit Ni-P coating on the Cu-Ni layer. The Cu-Ni/Ni-P composite coatings not only exhibited superior corrosion resistance compared to single Cu-Ni coating in 3.5 wt.% NaCl solution, but also showed much better mechanical properties than single Cu-Ni coating.
In this study, a new ultra-wideband (UWB) band-edge selectivity antenna with a modified radiation slot using defected ground structure (DGS) is presented to obtain bandpass filtering reflection coefficient and gain performance. The well-designed DGS is designed on backside metallic of the substrate and can be seen as a low-pass filter that provides a good roll-off at a higher frequency. By connecting the DGS and the stepped slot and making them merge with each other, good cut-off property in the upper passband and better in-band impedance characteristics are obtained. Measured results show that the proposed design not only shows good band-edge selectivity in reflection coefficient and gain performance but also has a good impedance matching of −13.5 dB reflection coefficients and a good radiation efficiency of 90% in the operating frequencies. The measured bandwidth defined with the reflection coefficient less than −10 dB is from 3.1–11.2 GHz. Furthermore, the size of the filtering UWB antenna is 22 mm × 12 mm, which is smaller than many individual UWB antennas and UWB filters.
A compact reconfigurable filtering ultra-wideband (UWB) antenna with switchable band-notched functions is proposed. The basic structure of the proposed design is a filtering slot antenna with good band-edge selectivity using stepped impedance resonator feeding line. The reconfigurability is achieved by using two microstrip lines paralleling to the feeding line and two PIN diodes. The reconfigurable structure and bias circuit of the antenna are relatively simple and are not connected to the radiation structure, so they have little negative influence on the radiation characteristics of the antenna. Total four states could be achieved by using two PIN diodes to short the microstrip lines and ground. To verify the performance of the final design, multiple measured and simulated results in frequency and time domain are studied and analyzed. The measured results agreed very well with simulation. Compared with the traditional UWB antenna, the proposed antenna has advantages in size, filtering function in-band and out-of-band, and tunable states for multiple UWB applications.
Porous silicon nitride ceramics are attracting extensive attention due to its high strength and low dielectric loss. However, further strength enhancement at elevated temperatures is hindered by its intergranular phase, forming from sintering additives. This paper describes the fabrication of porous silicon nitride ceramic materials, by using a replacement method of carbothermal nitridation. The initial samples which were obtained from the sintering of mixed powder consisted of 95 wt% Si3N4 and 5 wt% Y2O3. After the removal of the oxide intergranular phase and the infiltration of mixtures of phenolic resins and silica sols, carbothermal nitridation process was carried out at 1550 °C for 2 h under nitrogen. X-ray diffraction and microstructural analysis revealed a complete replacement of oxide intergranular phases by the newly formed Si3N4 intergranular phase. The unmodified ceramic exhibited lower flexural strength at 1400 °C, which was only 50% of the room-temperature strength. Although the modified ceramic attained a slightly lower flexural strength at room temperature after the replacement of intergranular phase, its strength measured at 1400 °C could attain 90% of room-temperature strength.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.