We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Firefighters are routinely exposed to various traumatic events and often experience a range of trauma-related symptoms. Although these repeated traumatic exposures rarely progress to the development of post-traumatic stress disorder, firefighters are still considered to be a vulnerable population with regard to trauma.
Aims
To investigate how the human brain responds to or compensates for the repeated experience of traumatic stress.
Method
We included 98 healthy firefighters with repeated traumatic experiences but without any diagnosis of mental illness and 98 non-firefighter healthy individuals without any history of trauma. Functional connectivity within the fear circuitry, which consists of the dorsal anterior cingulate cortex, insula, amygdala, hippocampus and ventromedial prefrontal cortex (vmPFC), was examined using resting-state functional magnetic resonance imaging. Trauma-related symptoms were evaluated using the Impact of Event Scale – Revised.
Results
The firefighter group had greater functional connectivity between the insula and several regions of the fear circuitry including the bilateral amygdalae, bilateral hippocampi and vmPFC as compared with healthy individuals. In the firefighter group, stronger insula–amygdala connectivity was associated with greater severity of trauma-related symptoms (β = 0.36, P = 0.005), whereas higher insula–vmPFC connectivity was related to milder symptoms in response to repeated trauma (β = −0.28, P = 0.01).
Conclusions
The current findings suggest an active involvement of insular functional connectivity in response to repeated traumatic stress. Functional connectivity of the insula in relation to the amygdala and vmPFC may be potential pathways that underlie the risk for and resilience to repeated traumatic stress, respectively.
Simple and efficient approach for artificial photosynthesis of CO2 reduction into ethanol with flexible functional multi-layered membrane catalysts is suggested. The g-C3N4 and BiVO4 particle were synthesized by self-condensation and hydrothermal method. g-C3N4 membrane catalyst and g-C3N4/BiVO4 layered membrane catalyst were fabricated by casting and shaping of Nafion polymer mixture. XRD, FT-IR and XPS analyses proved that the intrinsic properties of g-C3N4 and BiVO4 were maintained after fabricating flexible functional multi-layered membrane catalyst. The interfacial contact between g-C3N4 and BiVO4 particles in flexible membrane catalyst for efficient transport of photogenerated electron was revealed by TEM and photoelectrochemical analysis. Finally, photochemical CO2 reduction reaction was performed with flexible functional multi-layered membrane catalysts. The g-C3N4 membrane catalysts produced 147 μM of ethanol during 12 hrs of CO2 reduction reaction while the g-C3N4/BiVO4 layered membrane catalysts produced 256 μM of ethanol during 12 hrs of CO2 reduction reaction. This is due to the higher solar light harvesting and efficient hole-charge separation from functional multi-layered BiVO4 membrane catalyst leading to the higher electron transport rate to g-C3N4 membrane catalysts, promoting the CO2 reduction reaction on the surface of g-C3N4 membrane catalyst.
The study's aim was to examine the association of alcohol consumption with verbal and visuospatial memory impairment in older people.
Methods:
Participants were 1,572, aged ≥60 years, in the hospital-based registry of the Clinical Research Center for Dementia of South Korea (CREDOS). Moderate drinking was defined as no more than seven drinks per week and three drinks per day. Memory impairment was defined as performance with more than 1 standard deviation below the mean value on the Seoul Verbal Learning Test and Rey Complex Figure Test.
Results:
Those who consumed alcohol moderately, compared with abstainers, had a lower odds of verbal memory impairment (Odds Ratio [OR] = 0.64; 95% Confidence Interval [CI]: 0.46–0.87), adjusting for covariates. Visuospatial memory, however, was not significantly associated with alcohol consumption.
Conclusions:
Moderate alcohol drinking is associated with a reduced likelihood of verbal memory impairment among older people attending memory clinics.
The effects of polymer substrates on the interfacial structure and the thermal stability of Ga-doped ZnO (GZO) thin films were investigated. The GZO thin films were deposited on polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) substrates by rf-magnetron sputtering at room temperature, and thermal stability tests of the GZO thin films on the polymer substrates were performed at 150°C up to 8 h in air. Electrical and structural characterizations of the GZO thin films on the PET and the PEN substrates were carried out, and the origins of the stable interfacial structure and the improved thermal stability of the GZO thin film on the PEN substrate were discussed.
We improved the method of light curve analysis for large numbers of eclipsing binaries. Current methods require a week to analyze the light curves of an eclipsing binary for its physical and orbital parameters. Therefore, we developed a new method to treat large numbers of light curves of eclipsing binaries. We tested the new method by analyzing more than 14 hundred light curves and 9 hundred light curves discovered by OGLE in the Small Magellanic Cloud and Galactic center, respectively.
Major depressive disorder (MDD) is closely related to stress reactions and serotonin probably underpins the pathophysiology of MDD. Alterations of the hypothalamic-pituitary-adrenal axis at the gene level have reciprocal consequences on serotonin neurotransmission. Glucocorticoid receptor (GR) polymorphisms affect glucocorticoid sensitivity, which is associated with cortisol feedback effects. Therefore, we hypothesised that GR polymorphisms are associated with the susceptibility to MDD and predict the treatment response.
Method:
Ninety-six subjects with a minimum score of 17 on the 21-item Hamilton Depression Scale (HAMD) at baseline were enrolled into the present study. The genotypes of GR (N363S, ER22/23EK, Bcl1, and TthIII1 polymorphisms) were analysed. The HAMD score was again measured after 1, 2, 4 and 8 weeks of antidepressant treatment to detect whether the therapeutic effects differed with the GR genotype.
Results:
Our subjects carried no N363S or ER22/23EK genetic polymorphisms and three types of Bcl1 and TthIII1 genetic polymorphisms. The C/C genotype and C allele at Bcl1 polymorphism were more frequent in MDD patients than in normal controls (p < 0.01 and p = 0.01, respectively). The genotype distributions did not differ significantly between responders and non-responders.
Conclusion:
These results suggest that GR polymorphism cannot predict the therapeutic response after antidepressant administration. However, GR polymorphism (Bcl1) might play a role in the pathophysiology of MDD. Future studies should check this finding in larger populations with different characteristics.
The sap of Acer mono has been called ‘bone-benefit-water’ in Korea because of its mineral and sugar content. In particular, the calcium concentration of the sap of A. mono is 37·5 times higher than commercial spring water. In the current study, we examined whether A. mono sap could improve or prevent osteoporosis-like symptoms in a mouse model. Male mice (3 weeks old) were fed a low-calcium diet supplemented with 25, 50 or 100 % A. mono sap, commercial spring water or a high calcium-containing solution as a beverage for 7 weeks. There were no differences in weekly weight gain and food intake among all the groups. Mice that were given a low-calcium diet supplemented with commercial spring water developed osteoporosis-like symptoms. To assess the effect of sap on osteoporosis-like symptoms, we examined serum calcium concentration, and femur density and length, and carried out a histological examination. Serum calcium levels were significantly lower in mice that received a low-calcium diet supplemented with commercial spring water (the negative control group), and in the 25 % sap group compared to mice fed a normal diet, but were normal in the 50 and 100 % sap and high-calcium solution groups. Femur density and length were significantly reduced in the negative control and 25 % sap groups. These results indicate that a 50 % sap solution can mitigate osteoporosis-like symptoms induced by a low-calcium diet. We also examined the regulation of expression of calcium-processing genes in the duodenum and kidney. Duodenal TRPV6 and renal calbindin-D9k were up-regulated dose-dependently by sap, and the levels of these factors were higher than those attained in the spring water-treated control. The results demonstrate that the sap of A. mono ameliorates the low bone density induced by a low-calcium diet, most likely by increasing calcium ion absorption.
We introduce a simple preparation method for ultrathin carbon support
films that is especially useful for high-resolution electron microscopy
(HREM) of nanoparticles. Oxidized iron nanoparticles were used as a test
sample in a demonstration of this method. The film qualities are discussed
on the basis of electron-energy-loss spectroscopy (EELS) and image
analysis techniques such as thickness maps and histograms. We carried out
a comparison between the homemade and commercial film qualities. The
relative thickness of the homemade support films was 0.6 times less than
that of the commercial films, which was calculated from the EELS analysis,
whereas the thicknesses of both carbon support films varied within about
3%. The percentage of the observable area was about 67 ± 7.6% of
the support film. This was about twice as large as the commercial film (32
± 9.3%). The HREM image of the sample prepared with our support
film improved 9% in brightness and 15% in contrast compared with images
obtained with the commercial support.
Oxidative modification of LDL is causally involved in the development of atherosclerosis and occurs in vivo in the blood as well as within the vascular wall. The present study attempted to explore whether polyphenolic flavonoids influence monocyte-endothelium interaction and lectin-like oxidised LDL receptor 1 (LOX-1) expression involved in the early development of atherosclerosis. The flavones luteolin and apigenin inhibited THP-1 cell adhesion onto oxidised LDL-activated human umbilical vein endothelial cells (HUVEC), while the flavanols of ( − )epigallocatechin gallate and (+)catechin, the flavonols of quercetin and rutin, and the flavanones of naringin, naringenin, hesperidin and hesperetin did not have such effects. Consistently, Western blot analysis revealed that the flavones at 25 μm dramatically and significantly abolished HUVEC expression of vascular cell adhesion molecule-1 and E-selectin evidently enhanced by oxidised LDL; these inhibitory effects were exerted by drastically down regulating mRNA levels of these cell adhesion molecules. In addition, quercetin and luteolin significantly attenuated expression of LOX-1 protein up regulated in oxidised LDL-activated HUVEC with a fall in transcriptional mRNA levels of LOX-1. In addition, quercetin and luteolin clearly blunted oxidised LDL uptake by HUVEC treated with oxidised LDL. The results demonstrate that the flavones luteolin and apigenin as well as quercetin were effective in the different initial steps of atherosclerosis process by inhibiting oxidised LDL-induced endothelial monocyte adhesion and/or oxidised LDL uptake. Therefore, certain flavonoids qualify as anti-atherogenic agents in LDL systems, which may have implications for strategies attenuating endothelial dysfunction-related atherosclerosis.
The structure and magnetism of ZnO-based solid solutions, dilute magnetic semiconductors, with nickel solute were obtained via a solvothermal method. Compared with previous methods for solid solution DMSs, our synthesis method was really facile and economical. The one-dimensional solid solution of Zn1-xNixO nanostructures were grown in a alcoholic solution. Moreover, the percentage of doped nickel can be easily controlled. The X-ray diffraction, transmission electron micrograph and magnetization hysteresis loops of nickel-doped ZnO nanocrystals were presented to confirm that the nickel impurities are embedded inside the nanocrystal.
1-Phenyl-3-naphthyl-5-((dimethylamino)phenyl)-2-pyrazoline with different diameters of 40 - 190 nm were prepared by the reprecipitation method and polymerized with poly(methyl methacrylate-co-ethylene glycol dimethacrylate) using cationic surfactants for full color electronic paper, which is expected to substitute for the future display. The electronic ink particles of pyrazoline organic nanoparticles polymerized by poly(methylmethacrylate-co-ethylene glycol dimethacrylate) were prepared and monodispersed successfully in aqueous alcohol medium. The size of mono-dispersed electronic ink particles is from 160 to 550 nm. The ink particle size was found to decrease with increasing concentration of the surfactant. The effect of surfactant was significant. The appropriate additions of surfactants result in an increase in electrophoretic mobility. The electrophoretic mobility of the resulting electronic inks was −7.5 to −3.6 × 10−5 cm2/ V·s in the presence of surfactants.
Poly(urea-formaldehyde) capsules enclosing electrophoretic particle dispersion were formed by carrying out an in-situ polymerization reaction in an oil-in-water emulsion. The internal dispersion was composed of pigment particles Yellow-14 modified by charge control agent to have superior electrophoresis velocity and the mixture of tetrachloroethylene and sec-butylbenzene, using Span 80 as the stabilizer and emulsifier. FE-SEM, TEM, and optical microscope (OM) were performed to investigate on the capsule size and surface morphology. Contact angle measurements showed that UF prepolymer deposited at the o/w interface to form hollow capsules only when the interfacial tension is large enough.
Ag particles were generated on Ag+-doped polyimide film by ion exchanging, followed by copper deposition using metallic silver particles as seeds. The Cu layers were coated on the surface of polyimide films by electroless plating method. The surface image and morphology of Cu layers on the polyimide films were characterized with scanning electron microscopy (SEM), and atomic force microscopy (AFM). The chemical composition on the PI film was investigated energy dispersive X-ray (EDX) spectrometer.
This paper describes the growth kinetics of an interfacial MgO layer as well as those of an MgB2 layer during ex situ annealing of the evaporated amorphous boron (a-B) film under Mg vapor overpressure. A thin MgO layer is formed at the interface between a-B and Al2O3 substrate before the formation of crystalline MgB2 layer and the interfacial layer is epitaxially related with Al2O3 substrate (MgO (111)[110] // Al2O3 (0001)[1100]). The interfacial MgO layer continues to grow during the annealing, and its apparent growth rate is about 0.1 nm/min. The analysis of MgB2 layer growth kinetics using cross-sectional transmission electron microscopy reveals that there exist two distinct growth fronts at both sides of an MgB2 layer. The growth kinetics of the lower MgB2 layer obeys the parabolic rate law during the entire annealing time. The growth of the upper MgB2 layer is controlled by the surface reaction between out-diffused boron and Mg vapor up to 10 min, resulting in a rough surface morphology of MgB2 layer. By considering the mass balance of Mg and boron during ex situ annealing, we obtained the diffusivities of Mg and boron in MgB2 layer which were in the same order range of approximately 10−12 cm2/s.
The reaction sequence and microstructure evolution of a crystalline MgB2 layer were examined during ex situ annealing of evaporated amorphous boron (a-B) with Mg vapor. Mg was found to migrate rapidly into the a-B layer in the initial stage of reaction with a uniform concentration of about 12 at.%. A thin layer of crystalline MgO was observed at the interface between a-B and the Al2O3 substrate. It was identified that an MgB2 layer started to form at the surface by the nucleation and growth process in polycrystalline form. It appears that there exists two distinct growth fronts in the MgB2 layer: one lying at the surface and the other lying at the interface between the MgB2 layer and the a-B. The microstructural evolution of this layer showed significant differences depending on the location of these two growth fronts.
ITO nanoparticles were synthesized by coprecipitation method in an aqueous solution and thermal method in an alcohol solution. The coprecipitate prepared at room temperature showed the crystal structure of indium oxide in X-ray diffraction when it was annealed above 300°C. In thermal method, the nanoparticles have two phase crystal structure of indium oxide hydroxide (InOOH) and indium hydroxide (In(OH)3). Annealing at the temperature above 300 °C, it showed the rhombohedral crystal structure of indium oxide (In2O3). The phase transition of ITO nanoparticle was also detected with DSC. Near IR-reflective film was prepared by spin coating using ITO sol solution. Transmission electron microsopy (TEM) and energy dispersive X-ray spectrometer (EDS) were used to characterize the morphology and composition of ITO nanoparticles. Near-IR (NIR) spectrometer was used to determine reflectance on the surface of ITO film in the NIR-radiation region.
Ag nanoparticles have been prepared by thermal decomposition of Ag-oleate complex using electric furnace at 300 °C for about 4 hrs. TEM images of the particles showed 2-dimensional assembly of particles with diameter of 8.0 ± 1.3 nm, demonstrating the uniformity of these nanoparticles. Ag-TiO2 nanoparticles were synthesized by sol-gel process and they had core-shell structure. Results showed the formation of the silver core and titanium oxide shell. In this study, we investigated the structure of Ag nanoparticle and Ag-TiO2 nanoparticle and Ag-TiO2-chitosan complex and their functions of antibiosis and deodorization.
GaN nanorods were grown on (0001) sapphire substrates by hydride vapor phase epitaxy HVPE) through a self-assemble process. The nanorods were grown at high growth rate, with the c-axis maintained perpendicular to the substrate surface. The dependence of rod diameter and density on growth conditions was systematically investigated. The average diameter was minimized to 80-120 nm and the density of the GaN nanorods was 100×1012 rods/m2.
SrTiO3:Pr,Ga phosphor using Li2CO3 as a flux has been investigated as a red phosphor for the application to fluorescent displays operated at low voltage. In SrTiO3:Pr,Ga system, Pr3+can substitute for Sr2+ because the ionic radius of Pr3+almost coincides with that of Sr2+. Previous work, it was found by XRF analysis of SrTiO3:Pr,Ga single crystal that only a small fraction of Pr ions are incorporated in the SrTiO3 lattice. In the present study, the effect of Li addition into SrTiO3:Pr,Ga on the cathodoluminescence (CL) properties was examined at low acceleration voltage. Especially, thanks to the liquid phase of Li2CO3 during the sintering process, doped Li ions act as a lubricant for the efficient incorporation of Pr ions into SrTiO3:Pr,Ga lattice. Furthermore, it is found that the Li addition could enhance the generation of the characteristic emission of Pr-activated SrTiO3phosphors.
We have studied infrared photoluminescence (PL) and x-ray diffraction (XRD) of 400 nm and 1500 nm thick InAs epilayers on GaAs, and 4 nm thick InAs on graded InGaAs layer with total thickness of 300 nm grown by molecular beam epitaxy. The PL peak positions of 400 nm, 1500 nm and 4 nm InAs epilayer measured at 10 K are blue-shifted from that of InAs bulk by 6.5, 4.5, and 6 meV, respectively, which can be largely explained by the residual strain in the epilayer. The residual strain caused by the lattice mismatch between InAs and GaAs or graded InGaAs/GaAs was observed from XRD measurements. While the PL peak position of 400 nm thick InAs layer is linearly shifted toward higher energy with increase in excitation intensity ranging from 10 to 140 mW, those of 4 nm InAs epilayer on InGaAs and 1500 nm InAs layer on GaAs is gradually blue-shifted and then, saturated above a power of 75 mW. These results suggest that adopting a graded InGaAs layer between InAs and GaAs can efficiently reduce the strain due to lattice mismatch in the structure of InAs/GaAs.