This study examined surface modification of solder resist and dry film resist using 60 Hz nonequilibrium atmospheric pressure plasma with O2/N2 mixing gas. Results show that the plasma discharge condition at O2/N2 mixing ratio of 0.1% was the best for surface modification for both materials, and the surfaces were modified sufficiently at 0.45 m/min package substrate transportation speed. From the plasma diagnostics by Vacuum Ultraviolet Absorption Spectroscopy (VUVAS) and Optical Emission Spectroscopy (OES), it was found that the behaviors of the oxygen radical density and NO-γ emission intensity correlate strongly with surface modification. The extremely high oxygen radical density around 4.7 × 1013 cm-3 was obtained at O2/N2 mixing ratio of 0.1%. The electron density was 2.5 × 1015 cm-3 that is two digits more than that of the conventional atmospheric pressure plasma such as Dielectric Barrier Discharge (DBD). The solder resist surface with the plasma treatment was analyzed by X-ray Photoelectron Spectroscopy (XPS), and it was clarified that material surface was modified by hydrophilic group generation owing polymer chain oxidation with oxygen radical.