We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this study, in situ electrical biasing was combined with transmission electron microscopy (TEM) in order to study the formation and evolution of Wadsley defects and Magnéli phases during electrical biasing and resistive switching in titanium dioxide (TiO2). Resistive switching devices were fabricated from single-crystal rutile TiO2 substrates through focused ion beam milling and lift-out techniques. Defect evolution and phase transformations in rutile TiO2 were monitored by diffraction contrast imaging inside the TEM during electrical biasing. Reversible bipolar resistive switching behavior was observed in these single-crystal TiO2 devices. Biased induced reduction reactions created increased oxygen vacancy concentrations to such an extent that shear faults (Wadsley defects) and oxygen-deficient phases (Magnéli phases) formed over large volumes within the TiO2 TEM specimen. Nevertheless, the observed reversible formation/dissociation of Wadsley defects does not appear to correlate to resistive switching phenomena at these length scales. These defect zones were found to reversibly reconfigure in a manner consistent with charged oxygen vacancy migration responding to the applied bias polarity.
Electron diffraction in both SEM and TEM provides a contrast mechanism for imaging defects as well as a means for quantifying elastic strain. Electron backscatter diffraction (EBSD) is the commercially established method for SEM-based diffraction analysis. In EBSD, Kikuchi patterns are acquired by a charge-coupled device (CCD) camera and indexed using commercial software. Phase and crystallographic orientation information can be extracted from these Kikuchi patterns, and researchers have developed cross-correlation methods to measure strain as well.
The electron channeling contrast imaging (ECCI) technique was utilized to investigate atomic step morphologies and dislocation densities in 3C-SiC films grown by chemical vapor deposition (CVD) on Si (001) substrates. ECCI in this study was performed inside a commercial scanning electron microscope using an electron backscatter diffraction (EBSD) system equipped with forescatter diode detectors. This approach allowed simultaneous imaging of atomic steps, verified by atomic force microscopy, and dislocations at the film surface. EBSD analysis verified the orientation and monocrystalline quality of the 3C-SiC films. Dislocation densities in 3C-SiC films were measured locally using ECCI, with qualitative verification by x-ray diffraction. Differences in the dislocation density across a 50 mm diameter 3C-SiC film could be attributed to subtle variations during the carbonization process across the substrate surface.
Using transmission electron microscopy, we have analyzed dislocations in AlN nucleation layers and GaN films grown by metallorganic chemical vapor deposition (MOCVD) on the (0001) surface of epitaxially-grown 4H-SiC mesas with and without steps. For 4H-SiC substrates free of SiC surface steps, half-loop nucleation and glide parallel to the AlN/SiC interfacial plane play the dominant role in strain relief, with no mechanism for generating threading dislocations. In contrast, 4H-SiC mesa surfaces with steps give rise to regions of high stress at the heteroepitaxial interface, thereby providing an environment conducive to the nucleation and growth of threading dislocations, which act to accommodate misfit strain by the tilting of threading edge dislocations.