We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, the generation of relativistic electron mirrors (REMs) and the reflection of an ultra-short laser off this mirrors are discussed, applying two-dimensional particle-in-cell (2D-PIC) simulations. REMs with ultra-high acceleration and expanding velocity can be produced from a solid nanofoil illuminated normally by an ultra-intense femtosecond laser pulse with a sharp rising edge. Chirped attosecond pulse can be produced through the reflection of a counter-propagating probe laser off the accelerating REM. In the electron moving frame, the plasma frequency of the REM keeps decreasing due to its rapidly expanding. The laser frequency, on the contrary, keeps increasing due to the acceleration of REM and the relativistic Doppler shift from the lab frame to the electron moving frame. Within an ultra-short time interval, the two frequencies will be equal in the electron moving frame, which leads the resonance between laser and REM. The reflected radiation near this interval and the corresponding spectra will be amplified due to the resonance. Through adjusting the arriving time of the probe laser, certain part of the reflected field could be selectively amplified or depressed, leading to the selectively adjusting of the corresponding spectra.
The clinical characteristics of patients with COVID-19 were analysed to determine the factors influencing the prognosis and virus shedding time to facilitate early detection of disease progression. Logistic regression analysis was used to explore the relationships among prognosis, clinical characteristics and laboratory indexes. The predictive value of this model was assessed with receiver operating characteristic curve analysis, calibration and internal validation. The viral shedding duration was calculated using the Kaplan–Meier method, and the prognostic factors were analysed by univariate log-rank analysis and the Cox proportional hazards model. A retrospective study was carried out with patients with COVID-19 in Tianjin, China. A total of 185 patients were included, 27 (14.59%) of whom were severely ill at the time of discharge and three (1.6%) of whom died. Our findings demonstrate that patients with an advanced age, diabetes, a low PaO2/FiO2 value and delayed treatment should be carefully monitored for disease progression to reduce the incidence of severe disease. Hypoproteinaemia and the fever duration warrant special attention. Timely interventions in symptomatic patients and a time from symptom onset to treatment <4 days can shorten the duration of viral shedding.
The trace elements in quartz, Al and Ti, contain considerable information about mineral genesis, and determining their concentrations is of great importance in geology. Electron probe microanalysis has the advantages of non-destructive testing and high spatial resolution; however, it is a challenge to improve the accuracy and precision of trace element detection using this method. The important factors affecting accuracy include the fragility of quartz lattices at high beam currents and the methods used to determine the background. In this paper, the peaks of Al-Kα and Ti-Kα, and their backgrounds, were found to exhibit intensity variations at high beam currents and small beam diameters; therefore, it is necessary to select a large beam diameter (up to 20 µm) to avoid variations in intensity at high currents (500 nA). For background determination of Al, a multipoint background method is proposed to determine the background value, which greatly improves the accuracy of the results. For Ti, the choice of background measurement does not affect the result. In addition, it is verified that the background obtained from other quartz samples can be used as the background of an unknown quartz sample, which reduces the analysis time and minimizes sample damage.
The Ediacaran Doushantuo Formation at Weng'an, South China hosts well-preserved phosphatized microfossils known as the Weng'an biota. A laser ablation ICP-MS analysis of rare earth element (REE) characteristics of the fossil-bearing black phosphorite unit of the Doushantuo Formation at Weng'an was conducted, with the aim of unravelling the depositional conditions and diagenetic processes during formation of the phosphorites. Spherical phosphatized microfossils and phosphatic clasts were analysed, and the REE data display middle REE (MREE) -enriched shale-normalized REE patterns. The spherical phosphatized microfossils show an increase in total REE contents (∑REE) from core to rim. Negative correlations between ∑REE and the extent of MREE enrichment over the other REE (indicated by LaN/SmN, YbN/SmN) are observed for analysed spots within individual phosphatic grains, which may be due to complex diagenetic history of the phosphatic grains, with fluctuations in REE sources and chemical parameters in a high-energy shallow-water environment being additional factors. The LaN/YbN and LaN/SmN characteristics of the phosphatic grains suggest they were mostly influenced by early diagenetic alteration rather than late extensive recrystallization. The negative Ce anomalies in the samples suggest they formed under oxic-bottom-water conditions. Positive Eu anomalies are present in all samples, and are likely to reflect involvement of hydrothermal fluids rather than changes in redox conditions of porewater. Overall this study has major implications for phosphorites as important archives for the study of geochemical proxies, the Ediacaran period and also evolutionary changes.
The temporal dynamics of ciliate community structure in a southern Chinese shrimp aquaculture facility were investigated during the period June–September 2012. A total of 53 species belonging to 37 genera and 17 orders were recorded based on analyses of eight samples. Ciliate abundance peaked between 16 August and 14 September 2012, while the maximum number of species occurred on 26 June 2012. Clear temporal patterns were observed in the ciliate community structure. The patterns of succession of the 10 most abundant species were consistent with the results of a Canonical Analysis of Principal coordinates (CAP) analysis. Correlation analyses showed that these patterns of succession were related to temporal changes in environmental variables. In summary, the results demonstrate that the ciliate community responds predictably to environmental variations and recovers from shrimp cultivation.
The Myanmar snub-nosed monkey Rhinopithecus strykeri was discovered in 2010 on the western slopes of the Gaoligong Mountains in the Irrawaddy River basin in Myanmar and subsequently in the same river basin in China, in 2011. Based on 2 years of surveying the remote and little disturbed forest of the Gaoligong Mountains National Nature Reserve in China, with outline transect sampling and infrared camera monitoring, a breeding group comprising > 70 individuals was found on the eastern slopes of the Gaoligong Mountains in the Salween River Basin. Given the Critically Endangered status of this primate (a total of < 950 individuals are estimated to remain in the wild), efforts to protect the relatively undisturbed habitat of this newly discovered population and to prevent hunting are essential for the long-term survival of this species.
Picoeukaryotes (<2–3 μm) perform key roles for the functioning of marine ecosystems, but little is known regarding the composition and diversity of picoeukaryotes in aquaculture areas. In this study, the Illumina MiSeq platform was used for sequencing the V4 variable region within the 18S rDNA gene to analyse genetic diversity and relative abundance of picoeukaryotic communities in the Qinhuangdao scallop cultivation area of the Bohai Sea. The community was dominated by three super groups, the alveolates (54%), stramenopiles (41%) and chlorophytes (3%), and three groups, dinoflagellates (54%), pelagomonadales (40%) and prasinophytes (3%). Furthermore, a contrasting station with open water away from the eutrophic aquaculture area was chosen. The communities collected from the two stations exhibited significant differences, with higher diversity in the aquaculture area. These results provide the first snapshot of the picoeukaryotic diversity in surface waters of the Qinhuangdao scallop cultivation area, and basic data for future studies on picoeukaryote community in an aquaculture region.
Beyond the traditional phase conversion or biphase mixing hybrid, we developed the dilute magnesium-doped wollastonite inks and three-dimensional (3D) printing approaches to fabricate the ultrahigh strength bioceramic porous scaffolds. The mechanical strength (>120 MPa) of the porous bioceramics was an order of magnitude higher than the pure wollastonite and other stoichiometric Ca–Mg silicate porous bioceramics. This abnormal but expected improvement in strength in bioceramic scaffolds is equivalent or even superior to the mechanical requirement in load-bearing bone defects. The breakthrough is totally unexpected, and it quickly opens the door for the 3D printing bioceramics manufacture and large-area segmental bone defect repair applications.
We investigated the boron isotopic composition in loess–paleosol sequences in five different profiles in the Chinese Loess Plateau. Three possible boron sources are identified: atmospheric input, carbonates, and weathered silicate rocks. Variations of [Sr], [B], δ11B and the magnetic susceptibility correlate well with the pedogenetic intensity in three out of the five studied profiles, where pedogenesis under a cold–dry climate indicates lower δ11B, lower [B], lower magnetic susceptibility and higher [Sr] values. Exceptions to the variations between the δ11B and other known proxies were observed in arenaceous soils and the Red Clay sequence: the former suggested that vertical redistribution probably occurred with the boron migration, and the latter indicated an unknown mechanism of susceptibility enhancement. A better correlation between the δ11B and magnetic susceptibility and the quantitative estimation of boron budget from each source confirms the influence of paleoenvironmental changes on boron geochemical cycle. Significant positive correlations in Sr/Ca vs. B/Ca and Mg/Ca vs. B/Ca reflect consistent enrichment behavior of those mobile elements into calcium carbonate. The preliminary results imply that boron isotopic compositions in soils can be a potential geochemical proxy to reconstruct the paleoenvironmental changes in loess–paleosol sequences.
Considerable controversy exists regarding the associations of dietary patterns with the risk of all-cause, CVD and stroke mortality. Therefore, a meta-analysis was conducted to elucidate the potential associations between dietary patterns and the risk of all-cause, CVD and stroke mortality. The PubMed database was searched for prospective cohort studies on the associations between dietary patterns and the risk of all-cause, CVD and stroke mortality published until February 2014. Random-effects models were used to calculate the summary relative risk estimates (SRRE) based on the highest v. the lowest category of dietary pattern scores. Stratified analyses were conducted based on sex, geographical region, follow-up duration, and adjustment/non-adjustment for energy intake. A total of thirteen prospective cohort studies involving 338 787 participants were included in the meta-analysis. There was evidence of inverse associations between the prudent/healthy dietary pattern and the risk of all-cause (SRRE = 0·76, 95 % CI 0·68, 0·86) and CVD (SRRE = 0·81, 95 % CI 0·75, 0·87) mortality and an absence of association between this dietary pattern and stroke mortality (SRRE = 0·89, 95 % CI 0·77, 1·02). However, no significant associations were observed between the Western/unhealthy dietary pattern and the risk of all-cause (SRRE = 1·07, 95 % CI 0·96, 1·20), CVD (SRRE = 0·99, 95 % CI 0·91, 1·08) and stroke (SRRE = 0·94, 95 % CI 0·81, 1·10) mortality. In conclusion, the findings provide evidence that greater adherence to a prudent/healthy dietary pattern is associated with a lower risk of all-cause and CVD mortality and not significantly associated with stroke mortality and that the Western/unhealthy dietary pattern is not associated with all-cause, CVD and stroke mortality. Further studies are required to confirm these findings.
Au nanoparticles (Au NPs) have attracted much interest owing to their unique optical properties. In this paper, a facile process has been successfully developed to synthesize the SiO2/Au hybrid microspheres with a diameter of 200 nm via the galvanic replacement of SiO2/Ag hybrid microspheres and chlorauric acid (HAuCl4) solution. The as-prepared products were investigated by x-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM, JEOL-6700F), and transmission electron microscopy (TEM, JEOL 3010), respectively. As expected, the as-prepared SiO2/Au hybrid microspheres show strong chemical stability and superior catalytic reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). The SiO2/Au hybrid microspheres would be found widely used in wastewater treatment, catalytic reaction, bacteriostatic and bactericidal applications.
A semiring is a set
$S$
with two binary operations
$+ $
and
$\cdot $
such that both the additive reduct
${S}_{+ } $
and the multiplicative reduct
${S}_{\bullet } $
are semigroups which satisfy the distributive laws. If
$R$
is a ring, then, following Chaptal [‘Anneaux dont le demi-groupe multiplicatif est inverse’, C. R. Acad. Sci. Paris Ser. A–B262 (1966), 274–277],
${R}_{\bullet } $
is a union of groups if and only if
${R}_{\bullet } $
is an inverse semigroup if and only if
${R}_{\bullet } $
is a Clifford semigroup. In Zeleznikow [‘Regular semirings’, Semigroup Forum23 (1981), 119–136], it is proved that if
$R$
is a regular ring then
${R}_{\bullet } $
is orthodox if and only if
${R}_{\bullet } $
is a union of groups if and only if
${R}_{\bullet } $
is an inverse semigroup if and only if
${R}_{\bullet } $
is a Clifford semigroup. The latter result, also known as Zeleznikow’s theorem, does not hold in general even for semirings
$S$
with
${S}_{+ } $
a semilattice Zeleznikow [‘Regular semirings’, Semigroup Forum23 (1981), 119–136]. The Zeleznikow problem on a certain class of semirings involves finding condition(s) such that Zeleznikow’s theorem holds on that class. The main objective of this paper is to solve the Zeleznikow problem for those semirings
$S$
for which
${S}_{+ } $
is a semilattice.
We present a systematic study of the evolution of intermediate- and low-mass X-ray binaries. Our calculations suggest that millisecond binary pulsars in wide orbits might have neutron stars born massive, or been formed through mass transfer driven by planet/brown dwarf-involved common envelope evolution.
Interspecies intracytoplasmic sperm injection has been carried out to understand species-specific differences in oocyte environments and sperm components during fertilization. While sperm aster organization during cat fertilization requires a paternally derived centriole, mouse and hamster fertilization occur within the maternal centrosomal components. To address the questions of where sperm aster assembly occurs and whether complete fertilization is achieved in cat oocytes by interspecies sperm, we studied the fertilization processes of cat oocytes following the injection of cat, mouse, or hamster sperm. Male and female pronuclear formations were not different in the cat oocytes at 6 h following cat, mouse or hamster sperm injection. Microtubule asters were seen in all oocytes following intracytoplasmic injection of cat, mouse or hamster sperm. Immunocytochemical staining with a histone H3-m2K9 antibody revealed that mouse sperm chromatin is incorporated normally with cat egg chromatin, and that the cat eggs fertilized with mouse sperm enter metaphase and become normal 2-cell stage embryos. These results suggest that sperm aster formation is maternally dependent, and that fertilization processes and cleavage occur in a non-species specific manner in cat oocytes.
Iron oxides, including maghemite (γ-Fe2O3) and magnetite (Fe3O4), have been widely applied in many fields. For technological advances in the future, further improvements of their ferromagnetic properties are desirable. The development of iron ferrites with a large coercive field (Hc) is one of issues of consequence. For ferrites, however, enlarging the Hc value is not easy because of their low magnetocrystalling anisotropy constant. Here we report single-crystalline Cu-doped γ-Fe2O3 nanowires in which the controlled diameter (70–100 nm) and the graded Cu dopant (7, 10, and 15%) are directly obtained by a simple chemical vapor deposition technique. In particular, the coercive value (over 2 T) of 10% Cu-doped γ-Fe2O3 nanowires is much higher than that (<80 Oe) of undoped γ-Fe2O3 nanowires at room temperature. On the basis of the experimental magnetization data, the achievement of such a higher coercive field of Cu-doped γ-Fe2O3 (10%) nanowires is tentatively suggested.
Ndc80 (called Hec1 in human), the core component of the Ndc80 complex, is involved in regulation of both kinetochore-microtubule interactions and the spindle assembly checkpoint in mitosis; however, its role in meiosis remains unclear. Here, we report Ndc80 expression, localization, and possible functions in mouse oocyte meiosis. Ndc80 mRNA levels gradually increased during meiosis. Immunofluorescent staining showed that Ndc80 was restricted to the germinal vesicle and associated with spindle microtubules from the Pro-MI to MII stages. Ndc80 was localized on microtubules and asters in the cytoplasm after taxol treatment, while Ndc80 staining was diffuse after disruption of microtubules by nocodazole treatment, confirming its microtubule localization. Disruption of Ndc80 function by either siRNA injection or antibody injection resulted in severe chromosome misalignment, spindle disruption, and precocious polar body extrusion. Our data show a unique localization pattern of Ndc80 in mouse oocytes and suggest that Ndc80 may be required for chromosome alignment and spindle organization, and may regulate spindle checkpoint activity during mouse oocyte meiosis.
A useful procedure is described to rapidly obtain Bragg-reflection intensities from the FULLPROF suite, and the Bragg intensities can then be input into the GEST and the PECKCRYST programs for crystal-structure determination of small molecules. An example on using the new procedure for the structure determination from powder diffraction determination of hydrochlorothiazide (C7H8ClN3O4S2) is presented, and the powder-structure results obtained by the PECKCRYST program are in good agreement with previously reported single-crystal results.