We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To evaluate the dynamic changes of antibody levels in different groups after inoculation with the coronavirus disease 2019 (COVID-19) vaccine. The 1493 subjects who were tested for IgM and IgG against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at Qionglai Medical Center Hospital from June to October in 2021 were accepted for analyses of geometric mean titre (GMT) of IgG and IgM. The overall GMT of IgM and IgG in the population of Qionglai reached at a peak value at 1.497 (+3.810, −3.810) S/CO and 4.048 (+2.059, −2.059) S/CO in the second week, and then gradually decreased to 0.114 (+2.707, −2.707) and 1.885 (+1.506, −1.506) S/CO in the 11th–25th weeks, respectively. IgG was positive within 1 day, after that GMT increased continuously and peaked on the 13th day. There was a significant difference between male and female groups for titre of IgM during the prior 2 weeks and among three age groups for titre of IgG during the 2nd–3rd week after vaccination. The GMT level of IgG in the population vaccinated with the COVID-19 vaccine remained at a high level within 25 weeks and peaked on the 13th day, indicating that IgG could exist for a longer period and exhibiting positive SARS-CoV-2- defending effect.
The tectonic evolution of the Sibumasu Block during the Permian remains controversial, and Permian faunas and their paleobiogeographic affinities provide some insight into its paleogeographic and tectonic evolutionary histories. In this paper, a new brachiopod fauna dominated by Spinomartinia prolifica Waterhouse, 1981 is described from the uppermost part of the Taungnyo Group in the Zwekabin Range, eastern Myanmar. This brachiopod fauna includes 23 species and its age is well constrained as late Kungurian by the associated conodonts, i.e., Vjalovognathus nicolli Yuan et al., 2016 and Mesogondolella idahoensis (Youngquist, Hawley, and Miller, 1951), contrary to the late Sakmarian age given to the same brachiopod faunas previously reported from southern Thailand and Malaysia. Based on comprehensive comparisons of the Cisuralian brachiopod faunas and other data in different parts of the Sibumasu Block, we consider that they are better subdivided into two independent stratigraphic assemblages, i.e., the lower (earlier) Bandoproductus monticulus-Spirelytha petaliformis Assemblage of a Sakmarian to probably early Artinskian age, and the upper (younger) Spinomartinia prolifica-Retimarginifera alata Assemblage of a late Kungurian age. The former assemblage is a typical cold-water fauna, mainly composed of Gondwanan-type genera, e.g., Bandoproductus Jin and Sun, 1981, Spirelytha Fredericks, 1924, and Sulciplica Waterhouse, 1968. The latter assemblage is strongly characterized by an admixture of both Cathaysian and Gondwanan elements, as well as some genera restricted to the Cimmerian continents. Notably, the spatial distribution pattern of these two separate brachiopod assemblages varies distinctly. The Sakmarian cold-water brachiopod faunas have been found in association with glacial-marine diamictites throughout the Sibumasu Block including both the Irrawaddy and Sibuma blocks. In contrast, the Kungurian biogeographically mixed brachiopod faunas are only recorded in the Irrawaddy Block, unlike the Sibuma Block that contains a contemporaneous paleotropical Tethyan fusuline fauna. Thus, it appears likely that by the end of Cisuralian (early Permian), the Sibumasu Block comprised the Irrawaddy Block in the south with cool climatic conditions, and the Sibuma Block in the north with a temperate to warm-water environment, separated by the incipient Thai-Myanmar Mesotethys.
No relevant studies have yet been conducted to explore which measurement can best predict the survival time of patients with cancer cachexia. This study aimed to identify an anthropometric measurement that could predict the 1-year survival of patients with cancer cachexia. We conducted a nested case–control study using data from a multicentre clinical investigation of cancer from 2013 to 2020. Cachexia was defined using the Fearon criteria. A total of 262 patients who survived less than 1 year and 262 patients who survived more than 1 year were included in this study. Six candidate variables were selected based on clinical experience and previous studies. Five variables, BMI, mid-arm circumference, mid-arm muscle circumference, calf circumference and triceps skin fold (TSF), were selected for inclusion in the multivariable model. In the conditional logistic regression analysis, TSF (P = 0·014) was identified as a significant independent protective factor. A similar result was observed in all patients with cancer cachexia (n 3084). In addition, a significantly stronger positive association between TSF and the 1-year survival of patients with cancer cachexia was observed in participants aged > 65 years (OR: 0·94; 95 % CI 0·89, 0·99) than in those aged ≤ 65 years (OR: 0·96; 95 % CI 0·93, 0·99; Pinteraction = 0·013) and in participants with no chronic disease (OR: 0·92; 95 % CI 0·87, 0·97) than in those with chronic disease (OR: 0·97; 95 % CI 0·94, 1·00; Pinteraction = 0·049). According to this study, TSF might be a good anthropometric measurement for predicting 1-year survival in patients with cancer cachexia.
Schizophrenia is considered a polygenic disorder. People with schizophrenia and those with genetic high risk of schizophrenia (GHR) have presented with similar neurodevelopmental deficits in hemispheric asymmetry. The potential associations between neurodevelopmental abnormalities and schizophrenia-related risk genes in both schizophrenia and those with GHR remains unclear.
Aims
To investigate the shared and specific alternations to the structural network in people with schizophrenia and those with GHR. And to identify an association between vulnerable structural network alternation and schizophrenia-related risk genes.
Method
A total of 97 participants with schizophrenia, 79 participants with GHR and 192 healthy controls, underwent diffusion tensor imaging (DTI) scans at a single site. We used graph theory to characterise hemispheric and whole-brain structural network topological metrics. For 26 people in the schizophrenia group and 48 in the GHR group with DTI scans we also calculated their schizophrenia-related polygenic risk scores (SZ-PRSs). The correlations between alterations to the structural network and SZ-PRSs were calculated. Based on the identified genetic–neural association, bioinformatics enrichment was explored.
Results
There were significant hemispheric asymmetric deficits of nodal efficiency, global and local efficiency in the schizophrenia and GHR groups. Hemispheric asymmetric deficit of local efficiency was significantly positively correlated with SZ-PRSs in the schizophrenia and GHR groups. Bioinformatics enrichment analysis showed that these risk genes may be linked to signal transduction, neural development and neuron structure. The schizophrenia group showed a significant decrease in the whole-brain structural network.
Conclusions
The shared asymmetric deficits in people with schizophrenia and those with GHR, and the association between anomalous asymmetry and SZ-PRSs suggested a vulnerability imaging marker regulated by schizophrenia-related risk genes. Our findings provide new insights into asymmetry regulated by risk genes and provides a better understanding of the genetic–neural pathological underpinnings of schizophrenia.
Today, about 10–15 percent of couples at reproductive age worldwide are infertile and they are unable to conceive naturally without medical assistance. Infertility can be caused by male-only factors, female-only factors or a combination of both. However, the cause of infertility is currently unidentifiable in about 20–30 percent of patients, who are classified as “unexplained infertility”. Currently, there is a lack of effective medical treatment for most infertile couples to achieve natural pregnancy. Although assisted reproductive technology (ART) such as in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) are popular and effective procedures to treat both female and male factor infertility, they are very expensive and not always successful. Some patients require several attempts of treatment cycles to achieve a pregnancy and bear huge financial and emotional costs in the process.
The aim of this study was to explore the impact of polymorphism of PD-1 gene and its interaction with tea drinking on susceptibility to tuberculosis (TB). A total of 503 patients with TB and 494 controls were enrolled in this case–control study. Three single-nucleotide polymorphisms of PD-1 (rs7568402, rs2227982 and rs36084323) were genotyped and unconditional logistic regression analysis was used to identify the association between PD-1 polymorphism and TB, while marginal structural linear odds models were used to estimate the interactions. Genotypes GA (OR 1.434), AA (OR 1.891) and GA + AA (OR 1.493) at rs7568402 were more prevalent in the TB patients than in the controls (P < 0.05). The relative excess risk of interaction (RERI) between rs7568402 of PD-1 genes and tea drinking was −0.3856 (95% confidence interval −0.7920 to −0.0209, P < 0.05), which showed a negative interaction. However, the RERIs between tea drinking and both rs2227982 and rs36084323 of PD-1 genes were not statistically significant. Our data demonstrate that rs7568402 of PD-1 genes was associated with susceptibility to TB, and there was a significant negative interaction between rs7568402 and tea drinking. Therefore, preventive measures through promoting the consumption of tea should be emphasised in the high-risk populations.
The association between dietary Fe intake and diabetes risk remains inconsistent. We aimed to explore the association between dietary Fe intake and type 2 diabetes mellitus (T2DM) risk in middle-aged and older adults in urban China. This study used data from the Guangzhou Nutrition and Health Study, an on-going community-based prospective cohort study. Participants were recruited from 2008 to 2013 in Guangzhou community. A total of 2696 participants aged 40–75 years without T2DM at baseline were included in data analyses, with a median of 5·6 (interquartile range 4·1–5·9) years of follow-up. T2DM was identified by self-reported diagnosis, fasting glucose ≥ 7·0 mmol/l or glycosylated Hb ≥ 6·5 %. Cox proportional hazard models were used to estimate hazard ratios (HR) and 95 % CI. We ascertained 205 incident T2DM cases during 13 476 person-years. The adjusted HR for T2DM risk in the fourth quartile of haem Fe intake was 1·92 (95 % CI 1·07, 3·46; Ptrend = 0·010), compared with the first quartile intake. These significant associations were found in haem Fe intake from total meat (HR 2·74; 95 % CI 1·22, 6·15; Ptrend = 0·011) and haem Fe intake from red meat (HR 1·86; 95 % CI 1·01, 3·44; Ptrend = 0·034), but not haem Fe intake from processed meat, poultry or fish/shellfish. The association between dietary intake of total Fe or non-haem Fe with T2DM risk had no significance. Our findings suggested that higher dietary intake of haem Fe (especially from red meat), but not total Fe or non-haem Fe, was associated with greater T2DM risk in middle-aged and older adults.
The novel coronavirus disease 2019 (COVID-19) pandemic has spread to over 213 countries and territories. We sought to describe the clinical features of fatalities in patients with severe COVID-19.
Methods:
We conducted an Internet-based retrospective cohort study through retrieving the clinical information of 100 COVID-19 deaths from nonduplicating incidental reports in Chinese provincial and other governmental websites between January 23 and March 10, 2020.
Results:
Approximately 6 of 10 COVID-19 deaths were males (64.0%). The average age was 70.7 ± 13.5 y, and 84% of patients were elderly (over age 60 y). The mean duration from admission to diagnosis was 2.2 ± 3.8 d (median: 1 d). The mean duration from diagnosis to death was 9.9 ± 7.0 d (median: 9 d). Approximately 3 of 4 cases (76.0%) were complicated by 1 or more chronic diseases, including hypertension (41.0%), diabetes (29.0%) and coronary heart disease (27.0%), respiratory disorders (23.0%), and cerebrovascular disease (12.0%). Fever (46.0%), cough (33.0%), and shortness of breath (9.0%) were the most common first symptoms. Multiple organ failure (67.9%), circulatory failure (20.2%), and respiratory failure (11.9%) are the top 3 direct causes of death.
Conclusions:
COVID-19 deaths are mainly elderly and patients with chronic diseases especially cardiovascular disorders and diabetes. Multiple organ failure is the most common direct cause of death.
The aim of this study was to analyze the profile of chest injuries, oxygen therapy for respiratory failure, and the outcomes of victims after the Jiangsu tornado, which occurred on June 23, 2016 in Yancheng City, Jiangsu Province, China.
Methods:
The clinical records of 144 patients referred to Yancheng City No.1 People’s Hospital from June 23 through June 25 were retrospectively investigated. Of those patients, 68 (47.2%) sustained major chest injuries. The demographic details, trauma history, details of injuries and Abbreviated Injury Scores (AIS), therapy for respiratory failure, surgical procedures, length of intensive care unit (ICU) and hospital stay, and mortality were analyzed.
Results:
Of the 68 patients, 41 (60.3%) were female and 27 (39.7%) were male. The average age of the injured patients was 57.1 years. Forty-six patients (67.6%) suffered from polytrauma. The mean thoracic AIS of the victims was calculated as 2.85 (SD = 0.76). Rib fracture was the most common chest injury, noted in 56 patients (82.4%). Pulmonary contusion was the next most frequent injury, occurring in 12 patients (17.7%). Ten patients with severe chest trauma were admitted to ICU. The median ICU stay was 11.7 (SD = 8.5) days. Five patients required intubation and ventilation, one patient was treated with noninvasive positive pressure ventilation (NPPV), and four patients were treated with high-flow nasal cannula (HFNC). Three patients died during hospitalization. The hospital mortality was 4.41%.
Conclusions:
Chest trauma was a common type of injury after tornado. The most frequent thoracic injuries were rib fractures and pulmonary contusion. Severe chest trauma is usually associated with a high incidence of respiratory support requirements and a long length of stay in the ICU. Early initiation of appropriate oxygen therapy was vital to restoring normal respiratory function and saving lives. Going forward, HFNC might be an effective and well-tolerated therapeutic addition to the management of acute respiratory failure in chest trauma.
Maternal supraphysiological estradiol (E2) environment during pregnancy leads to adverse perinatal outcomes. However, the influence of oocyte exposure to high E2 levels on perinatal outcomes remains unknown. Thus, a retrospective cohort study was conducted to explore the effect of high E2 level induced by controlled ovarian stimulation (COH) on further outcomes after frozen embryo transfer (FET). The study included all FET cycles (n = 10,581) between 2014 and 2017. All cycles were categorized into three groups according to the E2 level on the day of the human Chorionic Gonadotropin trigger. Odds ratios (ORs) and their confidence intervals (CIs) were calculated to evaluate the association between E2 level during COH and pregnancy outcomes and subsequent neonatal outcomes. From our findings, higher E2 level was associated with lower percentage of chemical pregnancy, clinical pregnancy, ongoing pregnancy, and live birth as well as increased frequency of early miscarriage. Preterm births were more common among singletons in women with higher E2 level during COH (aOR1 = 1.93, 95% CI: 1.22–3.06; aOR2 = 2.05, 95% CI: 1.33–3.06). Incidence of small for gestational age (SGA) was more common in both singletons (aOR1 = 2.01, 95% CI: 1.30–3.11; aOR2 = 2.51, 95% CI: 1.69–3.74) and multiples (aOR1 = 1.58, 95% CI: 1.03–2.45; aOR2 = 1.99, 95% CI: 1.05–3.84) among women with relatively higher E2 level. No association was found between high E2 level during COH and the percentage of macrosomia or large for gestational age. In summary, oocyte exposure to high E2 level during COH should be brought to our attention, since the pregnancy rate decreasing and the risk of preterm birth and SGA increasing following FET.
The aim of this study is to characterize the injury profiles and outcomes of victims of a tornado in Jiangsu Province, China.
Methods:
This study retrospectively investigated the clinical records of 144 patients treated at a teaching hospital due to a tornado. Each patient’s demographic data, diagnosis, injury types, causes of injury, infection status, and outcomes were all reviewed.
Results:
Of the 144 patients, 64 (44.4%) were male, and 80 (55.6%) were female. The patients’ ages ranged from 2 months to 94 years; 91 (63.19%) were admitted within the first 12 h after the disaster. The most frequently injured sites were the body surfaces (24.48%), followed by the limbs and pelvis (21.79%) and chest (20.3%). Soft-tissue injuries and fractures were the most frequent injuries. Traumatic brain injuries were the main causes of death. Tornado-related injuries were primarily caused by flying/falling bricks, wood, and glass. Twenty-three (15.9%) patients suffered from infections, which consisted mainly of skin/soft tissue infections and pneumonia.
Conclusions:
Destructive tornadoes often cause heavy casualties with little warning. Medical aid agencies must be prepared to accommodate the massive numbers of injured patients after a catastrophe. Proper triage and prompt treatment of injured victims may decrease mortality. (Disaster Med Public Health Preparedness. 2019;xx:xxx-xxx).
Permian faunal affinity in the Lhasa Block plays a critical role in reconstructing its paleogeographic evolution. Cisuralian and Guadalupian faunas have been described from the Lhasa Block, but very few Lopingian (late Permian) brachiopods have been reported so far. In this paper, a new diverse brachiopod fauna consisting of 17 species of 17 genera and an unidentifiable Orthotetoidea is described from the uppermost part of the Xiala Formation at the Aduogabu section in the central part of the Lhasa Block. The age of this fauna can be assigned to the Changhsingian (late Lopingian) as indicated by the associated foraminifers Colaniella parva (Colani, 1924) and Reichelina pulchra Miklukho-Maklay, 1954. Characteristic brachiopods include Spinomarginifera chengyaoyenensis Huang, 1932, Haydenella wenganensis (Huang, 1932), and Araxathyris cf. dilatatus Shen, He, and Zhu, 1992. They also generally suggest a Changhsingian age. Paleobiogeographically, this fauna is uniformly composed of typical Tethyan elements represented by Spinomarginifera Huang, 1932 and Haydenella Reed, 1944, and some cosmopolitan elements, but no typical cold-water taxa of Gondwanan affinity. This is in contrast to the contemporaneous brachiopod faunas from the Tethys Himalayan region that are characterized by typical cold-water taxa of Gondwanan affinity, e.g., Costiferina indica (Waagen, 1884), Retimarginifera xizangensis Shen et al., 2000, Neospirifer (Quadrospina) tibetensis Ding, 1962. Thus, it is strongly indicative that the Lhasa Block had drifted into a relatively warm-water regime during the Changhsingian. An analysis of the paleobiogeographic change of brachiopods in the Lhasa Block throughout the entire Permian further suggests that the Lhasa Block probably had rifted away from the northern peri-Gondwanan margin between the latest Cisuralian and middle Guadalupian, that is, the Neotethys Ocean had opened before middle Guadalupian.
The oxidation behavior of two percentages of TiB + TiC reinforced Ti–6Al–4V composites derived from Ti–B4C–C and Ti–TiB2–TiC systems was investigated at 873–1073 K for 320 h in air. The oxidation weight gain curves of the (TiB + TiC)/Ti–6Al–4V composites at 973 K basically obey parabolic law, while those at 873 and 1073 K mainly follow linear law and parabolic-linear law, respectively. The oxide layers of the composites are predominately found to be rutile TiO2, Al2O3, and the mixture of V2O3 and V2O5. The oxidation layers turn thinner with increasing the nominal volume fraction of reinforcements in the (TiB + TiC)/Ti–6Al–4V composites. Moreover, according to the calculation results of reaction index (n) and effective activation energy (Qeff) and the analyses of cross-sections of the oxidation layers, the oxidation resistance ability of the composites from Ti–TiB2–TiC system is higher than that from Ti–B4C–C system while employing the same sintering temperature and nominal volume fraction of reinforcement.
The current transient was studied on AlGaN/GaN HEMTs for RF power amplifiers under different temperatures. The current transient measurements include two different approaches. One is to measure the current transient from off-state (without bias) to a quiescent point (Q-point). Different transient behaviors were observed while switching to different Q-points. Another one is to measure the current transient from different currents to the Q-point of VDS = 28 V and ID = 100 mA/mm. The different currents before switching to Q-point of VDS = 28 V and ID = 100 mA/mm show the different transient characteristics. Most of the current transient demonstrates temperature independence in this study.
Numerous efforts have been devoted to the derivation of equations describing the kinematics of finite-size spherical particles in arbitrary fluid flows. These approaches rely on asymptotic arguments to obtain a description of the particle motion in terms of a slow manifold. Here we present a novel approach that results in kinematic models with unprecedented accuracy compared with traditional methods. We apply a recently developed machine learning framework that relies on (i) an imperfect model, obtained through analytical arguments, and (ii) a long short-term memory recurrent neural network. The latter learns the mismatch between the analytical model and the exact velocity of the finite-size particle as a function of the fluid velocity that the particle has encountered along its trajectory. We show that training the model for one flow is sufficient to generate accurate predictions for any other arbitrary flow field. In particular, using as an exact model for trajectories of spherical particles, the Maxey–Riley equation, we first train the proposed machine learning framework using trajectories from a cellular flow. We are then able to accurately reproduce the trajectories of particles having the same inertial parameters for completely different fluid flows: the von Kármán vortex street as well as a two-dimensional turbulent fluid flow. For the second example we also demonstrate that the machine learned kinematic model successfully captures the spectrum of the particle velocity, as well as the extreme event statistics. The proposed scheme paves the way for machine learning kinematic models for bubbles and aerosols using high-fidelity DNS simulations and experiments.
Maternal dietary patterns and macronutrients intake have been shown to affect the development of gestational diabetes mellitus (GDM), but the findings are inconsistent. We aimed to identify maternal dietary patterns and examine their associations with GDM risk, and to evaluate the contributions of macronutrients intake to these associations. We included 2755 Chinese pregnant women from the Tongji Maternal and Child Health Cohort. Dietary intakes were assessed using a validated semi-quantitative FFQ 2 weeks before the diagnosis of GDM. GDM (n 248) was diagnosed based on the results of a 75-g, 2-h oral glucose tolerance test at 24–28 weeks gestation. We derived five different dietary patterns from a principal component analysis. The results showed that high fish–meat–eggs scores, which were positively related to protein intake and inversely related to carbohydrate intake, were associated with a higher risk of GDM (adjusted OR for quartile 4 v. quartile 1: 1·83; 95 % CI 1·21, 2·79; Ptrend=0·007) and higher plasma glucose levels. In contrast, high rice–wheat–fruits scores, which were positively related to carbohydrate intake and inversely related to protein intake, were associated with lower risk of GDM (adjusted OR for quartile 3 v. quartile 1: 0·54; 95 % CI 0·36, 0·83; Ptrend=0·010) and lower plasma glucose levels. In addition, dietary protein and carbohydrate intake significantly contributed to the associations between dietary patterns and GDM risk or glucose levels. These findings suggest that a dietary pattern characterised by high protein and low carbohydrate intake in pregnancy was associated with a higher risk of GDM, which may provide important clues for dietary guidance during pregnancy to prevent GDM.
Two new species of egg parasitoids, Oobius saimaensis Yao and Mottern new species and Oobius fleischeri Yao and Duan new species (Hymenoptera: Encyrtidae), are described from eggs of Agrilus fleischeri Obenberger, 1925 (Coleoptera: Buprestidae). Agrilus fleischeri is a phloem-feeding woodborer of poplar (Populus Linnaeus; Salicaceae) in northeastern China. These two species can be distinguished morphologically as O. fleischeri has five tarsomeres and O. saimaensis has four tarsomeres. Although O. saimaensis is morphologically similar to its sympatric congener O. agrili Zhang and Hang, 2005, an important natural enemy of the invasive emerald ash borer, Agrilus planipennis Fairmaire, 1888, molecular phylogenetics and morphological data indicate that they are distinct species. Phylogenetic relationships among the new species and other closely related species are also inferred by using DNA sequence data from several ribosomal and mitochondrial genes. In addition, we expand the known distribution of Oobius primorskyensis Yao and Duan, 2016 to include South Korea.
To examine the associations of vegetable and/or fruit consumption with metabolic syndrome (MetS).
Design
Meta-analysis of observational studies.
Setting
The electronic databases of PubMed, Web of Science and EMBASE were searched up to September 2017 for observational studies concerning the associations of vegetable and/or fruit consumption with MetS. The pooled relative risk (RR) of MetS for the highest v. the lowest category of vegetable and/or fruit consumption, as well as their corresponding 95 % CI, were calculated.
Results
A total of twenty-six observational studies (twenty cross-sectional, one case–control and five cohort studies) were included in the meta-analysis. Specifically, sixteen studies were related to vegetable consumption and the overall multivariable-adjusted RR evidenced a negative association between vegetable consumption and MetS (RR=0·89, 95 % CI 0·85, 0·93; P<0·001). For fruit consumption, sixteen studies were included and the overall multivariable-adjusted RR demonstrated that fruit consumption was inversely associated with MetS (RR=0·81, 95 % CI 0·75, 0·88; P<0·001). For vegetable and fruit consumption, eight studies were included; the overall multivariable-adjusted RR showed that vegetable and fruit consumption was also negatively associated with MetS (RR=0·75, 95 % CI 0·63, 0·90; P=0·002).
Conclusions
The existing evidence suggests that vegetable and/or fruit consumption is negatively associated with MetS. More well-designed prospective cohort studies are needed to elaborate the concerned issues further.
For the first time, an experiment has been conducted to investigate synthetic jet laminar vortex rings impinging onto porous walls with different geometries by time-resolved particle image velocimetry. The geometry of the porous wall is changed by varying the hole diameter on the wall (from 1.0 mm to 3.0 mm) when surface porosity is kept constant ($\unicode[STIX]{x1D719}=75\,\%$). The finite-time Lyapunov exponent and phase-averaged vorticity field derived from particle image velocimetry data are presented to reveal the evolution of the vortical structures. A mechanism associated with vorticity cancellation is proposed to explain the formation of downstream transmitted vortex rings; and both the vortex ring trajectory and the time-mean flow feature are compared between different cases. It is found that the hole diameter significantly influences the evolution of the flow structures on both the upstream and downstream sides of the porous wall. In particular, for a porous wall with a small hole diameter ($d_{h}^{\ast }=0.067$, 0.10 and 0.133), the transmitted finger-type jets will reorganize into a well-formed transmitted vortex ring in the downstream flow. However, for the case of a large hole diameter of $d_{h}^{\ast }=0.20$, the transmitted vortex ring is not well formed because of insufficient vorticity cancellation. Additionally, the residual vorticity gradually evolves into discrete jet-like structures downstream, which further weaken the intensity of the transmitted vortex ring. Consequently, the transmitted flow structures for the $d_{h}^{\ast }=0.20$ case would lose coherence more easily (or probably even transition to turbulence), resulting in a faster decay of the axial velocity and stronger entrainment of the transmitted jet. For all porous wall cases, the velocity profile of the transmitted jet exhibits self-similar behaviour in the far field ($z/D_{0}\geqslant 6.03$), which agrees well with the velocity distribution of free synthetic jets. With the help of the control-volume approach, the time-mean drag of the porous wall is evaluated experimentally for the first time. It is shown that the porous wall drag increases with the decrease in the hole diameter. Moreover, for a porous wall with a small hole diameter ($d_{h}^{\ast }=0.067$, 0.10 and 0.133), it appears that the porous wall drag mainly derives from the viscous effect. However, as $d_{h}^{\ast }$ increases to 0.20, the form drag associated with the porous wall geometry becomes significant.