We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The school–vacation cycle may have impacts on the psychological states of adolescents. However, little evidence illustrates how transition from school to vacation impacts students’ psychological states (e.g. depression and anxiety).
Aims
To explore the changing patterns of depression and anxiety symptoms among adolescent students within a school–vacation transition and to provide insights for prevention or intervention targets.
Method
Social demographic data and depression and anxiety symptoms were measured from 1380 adolescent students during the school year (age: 13.8 ± 0.88) and 1100 students during the summer vacation (age: 14.2 ± 0.93) in China. Multilevel mixed-effect models were used to examine the changes in depression and anxiety levels and the associated influencing factors. Network analysis was used to explore the symptom network structures of depression and anxiety during school and vacation.
Results
Depression and anxiety symptoms significantly decreased during the vacation compared to the school period. Being female, higher age and with lower mother's educational level were identified as longitudinal risk factors. Interaction effects were found between group (school versus vacation) and the father's educational level as well as grade. Network analyses demonstrated that the anxiety symptoms, including ‘Nervous’, ‘Control worry’ and ‘Relax’ were the most central symptoms at both times. Psychomotor disturbance, including ‘Restless’, ‘Nervous’ and ‘Motor’, bridged depression and anxiety symptoms. The central and bridge symptoms showed variation across the school vacation.
Conclusions
The school–vacation transition had an impact on students’ depression and anxiety symptoms. Prevention and intervention strategies for adolescents’ depression and anxiety during school and vacation periods should be differentially developed.
The emerging era of big data in radio astronomy demands more efficient and higher-quality processing of observational data. While deep learning methods have been applied to tasks such as automatic radio frequency interference (RFI) detection, these methods often face limitations, including dependence on training data and poor generalization, which are also common issues in other deep learning applications within astronomy. In this study, we investigate the use of the open-source image recognition and segmentation model, Segment Anything Model (SAM), and its optimized version, HQ-SAM, due to their impressive generalization capabilities. We evaluate these models across various tasks, including RFI detection and solar radio burst (SRB) identification. For RFI detection, HQ-SAM (SAM) shows performance that is comparable to or even superior to the SumThreshold method, especially with large-area broadband RFI data. In the search for SRBs, HQ-SAM demonstrates strong recognition abilities for Type II and Type III bursts. Overall, with its impressive generalization capability, SAM (HQ-SAM) can be a promising candidate for further optimization and application in RFI and event detection tasks in radio astronomy.
This paper studies the heterogeneity of households’ present bias in a heterogeneous-agent model. Our model jointly matches the average marginal propensities to consume and the wealth distribution in the USA, even when all wealth is liquid. A fiscal stimulus targeting households in the bottom half of the wealth distribution improves the consumption response. A financial literacy campaign removing present bias gets naive households out of the debt trap but harms sophisticated households’ wealth accumulation due to a lower equilibrium interest rate. Finally, we show that a borrowing cost penalty and illiquidity both discipline excessive borrowing and are therefore potential remedies for present bias and naivete.
The reactive Navier–Stokes equations with adaptive mesh refinement and a detailed chemical reactive mechanism (11 species, 27 steps) were adopted to investigate a detonation engine considering the injection and supersonic mixing processes. Flame acceleration and deflagration-to-detonation transition (DDT) in a premixed/inhomogeneous supersonic hydrogen–air mixture with and without transverse jet obstacles were addressed. Results demonstrate the difficulty in undergoing DDT in the premixed/inhomogeneous supersonic mixture within a smooth chamber. By contrast, multiple transverse jets injected into the chamber aid detonation transition by introducing perturbed vortices, shock waves and a suitable blockage ratio. Increasing distance between the leading shock and the flame tip impedes detonation transition due to an insufficient blockage ratio. The extremely perturbed distributions of fuel-lean and fuel-rich mixtures lead to more complicated flame structures. Also, a larger flame thickness appears in the inhomogeneous mixture compared with the premixed mixture, resulting in a lower combustion temperature. The key findings are that the DDT, detonation quenching and reinitiation are generated in the inhomogeneous supersonic mixture, but both DDT mechanisms are ascribed to a strong Mach stem with the Zel'dovich gradient mechanism. Additionally, the obtained results demonstrate that an intensely fuel-lean mixture (equivalence ratio = 0.15) results in a partially decoupled flame front. However, detonation reinitiation and subsequent self-sustained detonation occur when a fierce shock wave propagates through a highly sensitive mixture, even within a smaller and elongated area. Moreover, the inhomogeneous mixture also augments the propagation speed and detonation cell structure instabilities and delays the sonic point resulting from the extending non-equilibrium reaction.
We report a high-power ultra-narrow fiber-coupled diode laser using a Faraday anomalous dispersion optical filter (FADOF) as an external cavity element. An external cavity suitable for both the fiber-coupled package and FADOF configuration has been proposed. Using a 87Rb-based FADOF as the frequency-selective element, we realized a 103 W continuous laser output with a uniform circular beam. The center wavelength was precisely locked at the D2 line of the Rb resonance, and the bandwidth was narrowed from 1.8 nm (free-running, full width at half maximum (FWHM)) to 0.013 nm (6.9 GHz, FWHM). The side mode suppression ratio reached 31 dB. Such diode lasers with precise wavelength and high spectral brightness have critical applications in many fields, such as high-energy gas laser pumping, spin-exchange optical pumping, Raman spectroscopy and nonlinear optics.
In this paper, a high-order-mode (HOM) (TE330) cavity-fed 45° linear polarized 6×6 slot array antenna is proposed. The 45° linear polarization is achieved by introducing asymmetric cross slots on the HOM cavity, resulting in low profile and wide bandwidth. The antenna array was verified using standard printed circuit board technology. Measured results show that the impedance bandwidth ( $|S_{11}|\le$ −10 dB) is 13.9% (36.98–42.92 GHz), and the peak gain is 19.3 dBi with a 3-dB gain bandwidth of 13.6%. Attributed to its simple structure, low profile, and wide bandwidth, the presented antenna is a good candidate for 5G applications.
To investigate the associations between dietary patterns and biological ageing, identify the most recommended dietary pattern for ageing and explore the potential mediating role of gut microbiota in less-developed ethnic minority regions (LEMRs). This prospective cohort study included 8288 participants aged 30–79 years from the China Multi-Ethnic Cohort study. Anthropometric measurements and clinical biomarkers were utilised to construct biological age based on Klemera and Doubal’s method (KDM-BA) and KDM-BA acceleration (KDM-AA). Dietary information was obtained through the baseline FFQ. Six dietary patterns were constructed: plant-based diet index, healthful plant-based diet index, unhealthful plant-based diet index, healthy diet score, Dietary Approaches to Stop Hypertension (DASH), and alternative Mediterranean diets. Follow-up adjusted for baseline analysis assessed the associations between dietary patterns and KDM-AA. Additionally, quantile G-computation identified significant beneficial and harmful food groups. In the subsample of 764 participants, we used causal mediation model to explore the mediating role of gut microbiota in these associations. The results showed that all dietary patterns were associated with KDM-AA, with DASH exhibiting the strongest negative association (β = −0·91, 95 % CI (–1·19, −0·63)). The component analyses revealed that beneficial food groups primarily included tea and soy products, whereas harmful groups mainly comprised salt and processed vegetables. In mediation analysis, the Synergistetes and Pyramidobacter possibly mediated the negative associations between plant-based diets and KDM-AA (5·61–9·19 %). Overall, healthy dietary patterns, especially DASH, are negatively associated with biological ageing in LEMRs, indicating that Synergistetes and Pyramidobacter may be potential mediators. Developing appropriate strategies may promote healthy ageing in LEMRs.
Characterised by the extensive use of obsidian, a blade-based tool inventory and microblade technology, the late Upper Palaeolithic lithic assemblages of the Changbaishan Mountains are associated with the increasingly cold climatic conditions of Marine Isotope Stage 2, yet most remain poorly dated. Here, the authors present new radiocarbon dates associated with evolving blade and microblade toolkits at Helong Dadong, north-east China. At 27 300–24 100 BP, the lower cultural layers contain some of the earliest microblade technology in north-east Asia and highlight the importance of the Changbaishan Mountains in understanding changing hunter-gatherer lifeways in this region during MIS 2.
Decimetre-scale carbonaceous macrofossils from the Mesoproterozoic Gaoyuzhuang Formation in the Yanshan Range are known as the current oldest unambiguous evidence of macroscopic multicellular eukaryotes. Here, we reported a new SIMS zircon age of 1588.8 ± 6.5 Ma from a volcanic tuff in the Qianxi County of Hebei Province, about 11 m above the macrofossil’s horizon. This new age provides a direct age constraint on the macroscopic eukaryotic fossils from the Gaoyuzhuang Formation. It indicates that macroscopic life with the moderate diversity and certain morphological complexity had already evolved at the beginning of the Mesoproterozoic, and implies a possibility of discovering macroscopic eukaryotes in earlier rocks. This study also calls for a stratigraphic framework to integrate biological and environmental studies in different regions for a better understanding of the evolution of multicellular organisms and environmental change during this important period.
This study examines the pursuit-evasion game involving unmanned aerial vehicles (UAVs), with a specific focus on the scenario of N-pursuers-one-escapee. The primary objective is to develop an optimal strategy for the escapee when the pursuers possess superior capabilities. To obtain this objective, we conduct the following study. Firstly, to enhance realism, a non-cooperative differential game model is formulated, incorporating multiple motion characteristics, including aerodynamics, overloading, and imposed constraints. Secondly, the end-value performance index is subsequently converted to an integral one, simplifying the solution process of the Hamilton-Jacobi-Bellman (HJB) equation. An iterative method is utilised to determine the covariates using the Cauchy initial value problem, and its convergence and uniqueness are established. The optimal avoidance strategy is subsequently derived from the covariates. Finally, the superiority of the proposed strategy is validated through simulation experiments and compared to three advanced optimal avoidance strategies. A total of 1,000 anti-jamming simulation experiments are conducted to verify the robustness of the proposed strategy.
Disaster experiences have long-term effects on disaster preparedness. This study examined the long-term (10-y) effect of disaster severity of the 2008 Wenchuan earthquake on survivors’ disaster preparedness and the moderating effects of household vulnerability.
Methods:
The data were collected in January 2018 covering 30 counties in Wenchuan earthquake-stricken areas. The dependent variable was survivors’ disaster preparedness (including overall, material, knowledge and awareness, and action preparedness) in 2018. Disaster severity included survivors’ housing damage and county death rate caused by the earthquake in 2008. Household vulnerability is a set of conditions that negatively affects the ability of people to prepare for and withstand disaster, proxied by households’ per-capita income and the highest years of schooling of household members. We performed multivariable linear regression models to answer the research questions.
Results:
A higher county death rate was associated with better overall preparedness (β = 0.043; P < 0.05) and knowledge and awareness preparedness (β = 0.018; P < 0.05), but housing damage was not significantly associated with disaster preparedness. The positive association of county death rate with overall preparedness (β = −0.065; P < 0.05) becomes weaker when a household has a higher per-capita income. Also, with the household per-capita income increasing, the associations of county death rate with material preparedness (β = −0.037; P < 0.05) and action preparedness (β = −0.034; P < 0.01) become weaker.
Conclusions:
Disaster severity has positive and long-term effects on survivors’ disaster preparedness. Also, the positive and long-term effects are affected by household vulnerability. Specifically, the positive and long-term effects of disaster severity on disaster preparedness are more substantial when a household is more vulnerable.
An ultrasonic phased array system is introduced to study the three-dimensional (3-D) movement of a single bubble in a GaInSn alloy under a transverse magnetic field (MF), which is verified by bubble experiments in water. The 3-D motion trajectories of individual bubbles in the GaInSn are obtained under a horizontal MF. As the MF becomes stronger, the bubble successively oscillates in random directions (R mode), a direction perpendicular to the MF (V mode), a direction parallel to the MF (P mode) and finally it rises straight (S mode). The significant anisotropy of the oscillation directions at a moderate MF intensity may be due to the anisotropy of the vortex structure around the bubble. Furthermore, the oscillation amplitude gradually declines with increasing MF intensity until the bubble trajectory finally becomes a straight line. Our measurements allow us to specify the characteristic regions for the observed bubble modes in the $N-Eo-Re$ parameter space (N is the magnetic interaction parameter, Eo is the Eötvös number and Re is the Reynolds number). In addition, more detailed characteristics of bubble terminal velocity are revealed, showing that the bubble velocities are closely related to the motion modes. The increase in bubble velocity at a moderate MF intensity is caused by the weakening oscillation. At a high strength, the MF monotonically suppresses the rise velocity of the bubble with a fixed scaling law.
A decoupling method is proposed for the elastic stiffness modeling of hybrid robots based on the rigidity principle, screw theory, strain energy, and Castigliano’s second theorem. It enables the decoupling of parallel and serial modules, as well as the individual contributions of each elastic component to the mechanism’s stiffness performance. The method is implemented as follows: (1) formulate limb constraint wrenches and corresponding limb stiffness matrix based on the screw theory and strain energy, (2) formulate the overall stiffness matrix of parallel and serial modules corresponding to end of the hybrid robots based on the rigidity principle, principle of virtual work, the wrench transfer formula, and strain energy methods, and (3) obtain and decouple the overall stiffness matrix and deflection of the robot based on the Castigliano’s second theorem. Finally, A planar hybrid structure and the 4SRRR + 6R hybrid robot are used as illustrative examples to implement the proposed method. The results indicate that selectively enhancing the stiffness performance of the mechanism is the most effective approach.
A novel method, combining an asymmetric four-grating compressor (AFGC) with pulse post-compression, is numerically demonstrated to improve the spatial uniformity of laser beams and hence to suppress small-scale self-focusing (SSSF) during the beam propagation in nonlinear materials of high peak power lasers. The spatial uniformity of laser beams is an important factor in performing post-compression, due to the spatial intensity modulation, or hot spots will be aggravated during the nonlinear propagation and then seriously damage the subsequent optical components. Three-dimensional numerical simulations of post-compression are implemented based on a femtosecond laser with a standard compressor and an AFGC, respectively. The simulated results indicate that post-compression with the AFGC can efficiently suppress the SSSF and also shorten the laser pulses from 30 fs to sub-10 fs. This work can provide a promising route to overcome the challenge of SSSF and will be meaningful to promote the practical application of the post-compression technique in high peak power lasers.
Caused by multiple risk factors, heavy burden of major depressive disorder (MDD) poses serious challenges to public health worldwide over the past 30 years. Yet the burden and attributable risk factors of MDD were not systematically known. We aimed to reveal the long-term spatio-temporal trends in the burden and attributable risk factors of MDD at global, regional and national levels during 1990–2019.
Methods
We obtained MDD and attributable risk factors data from Global Burden of Disease Study 2019. We used joinpoint regression model to assess the temporal trend in MDD burden, and age–period–cohort model to measure the effects of age, period and birth cohort on MDD incidence rate. We utilized population attributable fractions (PAFs) to estimate the specific proportions of MDD burden attributed to given risk factors.
Results
During 1990–2019, the global number of MDD incident cases, prevalent cases and disability-adjusted life years (DALYs) increased by 59.10%, 59.57% and 58.57%, respectively. Whereas the global age-standardized incidence rate (ASIR), age-standardized prevalence rate (ASPR) and age-standardized DALYs rate (ASDR) of MDD decreased during 1990–2019. The ASIR, ASPR and ASDR in women were 1.62, 1.62 and 1.60 times as that in men in 2019, respectively. The highest age-specific incidence, prevalence and DALYs rate occurred at the age of 60–64 in women, and at the age of 75–84 in men, but the maximum increasing trends in these age-specific rates occurred at the age of 5–9. Population living during 2000–2004 had higher risk of MDD. MDD burden varied by socio-demographic index (SDI), regions and nations. In 2019, low-SDI region, Central sub-Saharan Africa and Uganda had the highest ASIR, ASPR and ASDR. The global PAFs of intimate partner violence (IPV), childhood sexual abuse (CSA) and bullying victimization (BV) were 8.43%, 5.46% and 4.86% in 2019, respectively.
Conclusions
Over the past 30 years, the global ASIR, ASPR and ASDR of MDD had decreased trends, while the burden of MDD was still serious, and multiple disparities in MDD burden remarkably existed. Women, elderly and populations living during 2000–2004 and in low-SDI regions, had more severe burden of MDD. Children were more susceptible to MDD. Up to 18.75% of global MDD burden would be eliminated through early preventing against IPV, CSA and BV. Tailored strategies-and-measures in different regions and demographic groups based on findings in this studywould be urgently needed to eliminate the impacts of modifiable risk factors on MDD, and then mitigate the burden of MDD.
Double-cone ignition [Zhang et al., Phil. Trans. R. Soc. A 378, 20200015 (2020)] was proposed recently as a novel path for direct-drive inertial confinement fusion using high-power lasers. In this scheme, plasma jets with both high density and high velocity are required for collisions. Here we report preliminary experimental results obtained at the Shenguang-II upgrade laser facility, employing a CHCl shell in a gold cone irradiated with a two-ramp laser pulse. The CHCl shell was pre-compressed by the first laser ramp to a density of 3.75 g/cm3 along the isentropic path. Subsequently, the target was further compressed and accelerated by the second laser ramp in the cone. According to the simulations, the plasma jet reached a density of up to 15 g/cm3, while measurements indicated a velocity of 126.8 ± 17.1 km/s. The good agreements between experimental data and simulations are documented.
Autoimmune diseases are pathological autoimmune reactions in the body caused by various factors, which can lead to tissue damage and organ dysfunction. They can be divided into organ-specific and systemic autoimmune diseases. These diseases usually involve various body systems, including the blood, muscles, bones, joints and soft tissues. The transient receptor potential (TRP) and PIEZO receptors, which resulted in David Julius and Ardem Patapoutian winning the Nobel Prize in Physiology or Medicine in 2021, attracted people's attention. Most current studies on TRP and PIEZO receptors in autoimmune diseases have been carried out on animal model, only few clinical studies have been conducted. Therefore, this study aimed to review existing studies on TRP and PIEZO to understand the roles of these receptors in autoimmune diseases, which may help elucidate novel treatment strategies.
Visual simultaneous localisation and mapping (vSLAM) has shown considerable promise in positioning and navigating across a variety of indoor and outdoor settings, significantly enhancing the mobility of robots employed in industrial and everyday services. Nonetheless, the prevalent reliance of vSLAM technology on the assumption of static environments has led to suboptimal performance in practical implementations, particularly in unstructured and dynamically noisy environments such as substations. Despite advancements in mitigating the influence of dynamic objects through the integration of geometric and semantic information, existing approaches have struggled to strike an equilibrium between performance and real-time responsiveness. This study introduces a lightweight, multi-modal semantic framework predicated on vSLAM, designed to enable intelligent robots to adeptly navigate the dynamic environments characteristic of substations. The framework notably enhances vSLAM performance by mitigating the impact of dynamic objects through a synergistic combination of object detection and instance segmentation techniques. Initially, an enhanced lightweight instance segmentation network is deployed to ensure both the real-time responsiveness and accuracy of the algorithm. Subsequently, the algorithm’s performance is further refined by amalgamating the outcomes of detection and segmentation processes. With a commitment to maximising performance, the framework also ensures the algorithm’s real-time capability. Assessments conducted on public datasets and through empirical experiments have demonstrated that the proposed method markedly improves both the accuracy and real-time performance of vSLAM in dynamic environments.
This paper retrospectively analysed the prevalence of macrolide-resistant Mycoplasma pneumoniae (MRMP) in some parts of China. Between January 2013 and December 2019, we collected 4,145 respiratory samples, including pharyngeal swabs and alveolar lavage fluid. The highest PCR-positive rate of M. pneumoniae was 74.5% in Beijing, the highest resistance rate was 100% in Shanghai, and Gansu was the lowest with 20%. The highest PCR-positive rate of M. pneumoniae was 74.5% in 2013, and the highest MRMP was 97.4% in 2019; the PCR-positive rate of M. pneumoniae for adults in Beijing was 17.9% and the MRMP was 10.48%. Among the children diagnosed with community-acquired pneumonia (CAP), the PCR-positive and macrolide-resistant rates of M. pneumoniae were both higher in the severe ones. A2063G in domain V of 23S rRNA was the major macrolide-resistant mutation, accounting for more than 90%. The MIC values of all MRMP to erythromycin and azithromycin were ≥ 64 μg/ml, and the MICs of tetracycline and levofloxacin were ≤ 0.5 μg/ml and ≤ 1 μg/ml, respectively. The macrolide resistance varied in different regions and years. Among inpatients, the macrolide-resistant rate was higher in severe pneumonia. A2063G was the common mutation, and we found no resistance to tetracycline and levofloxacin.
Genes involved in melanin production directly impact insect pigmentation and can affect diverse physiology and behaviours. The role these genes have on sex behaviour, however, is unclear. In the present study, the crucial melanin pigment gene black was functionally characterised in an urban pest, the German cockroach, Blattella germanica. RNAi knockdown of B. germanica black (Bgblack) had no effect on survival, but did result in black pigmentation of the thoraxes, abdomens, heads, wings, legs, antennae, and cerci due to cuticular accumulation of melanin. Sex-specific variation in the pigmentation pattern was apparent, with females exhibiting darker coloration on the abdomen and thorax than males. Bgblack knockdown also resulted in wing deformation and negatively impacted the contact sex pheromone-based courtship behaviour of males. This study provides evidence for black function in multiple aspects of B. germanica biology and opens new avenues of exploration for novel pest control strategies.