We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Depression is a debilitating mental disorder that often coexists with anxiety. The genetic mechanisms of depression and anxiety have considerable overlap, and studying depression in non-anxiety samples could help to discover novel gene. We assess the genetic variation of depression in non-anxiety samples, using genome-wide association studies (GWAS) and linkage disequilibrium score regression (LDSC).
Methods
The GWAS of depression score and self-reported depression were conducted using the UK Biobank samples, comprising 99,178 non-anxiety participants with anxiety score <5 and 86,503 non-anxiety participants without self-reported anxiety, respectively. Replication analysis was then performed using two large-scale GWAS summary data of depression from Psychiatric Genomics Consortium (PGC). LDSC was finally used to evaluate genetic correlations with 855 health-related traits based on the primary GWAS.
Results
Two genome-wide significant loci for non-anxiety depression were identified: rs139702470 (p = 1.54 × 10−8, OR = 0.29) locate in PIEZO2, and rs6046722 (p = 2.52 × 10−8, OR = 1.09) locate in CFAP61. These associated genes were replicated in two GWAS of depression from PGC, such as rs1040582 (preplication GWAS1 = 0.02, preplication GWAS2 = 2.71 × 10−3) in CFAP61, and rs11661122 (preplication GWAS1 = 8.16 × 10−3, preplication GWAS2 = 8.08 × 10−3) in PIEZO2. LDSC identified 19 traits genetically associated with non-anxiety depression (p < 0.001), such as marital separation/divorce (rg = 0.45, SE = 0.15).
Conclusions
Our findings provide novel clues for understanding of the complex genetic architecture of depression.
The association between executive dysfunction, brain dysconnectivity, and inflammation is a prominent feature across major psychiatric disorders (MPDs), schizophrenia, bipolar disorder, and major depressive disorder. A dimensional approach is warranted to delineate their mechanistic interplay across MPDs.
Methods
This single site study included a total of 1543 participants (1058 patients and 485 controls). In total, 1169 participants underwent diffusion tensor and resting-state functional magnetic resonance imaging (745 patients and 379 controls completed the Wisconsin Card Sorting Test). Fractional anisotropy (FA) and regional homogeneity (ReHo) assessed structural and functional connectivity, respectively. Pro-inflammatory cytokine levels [interleukin (IL)-1β, IL-6, and tumor necrosis factor-α] were obtained in 325 participants using blood samples collected with 24 h of scanning. Group differences were determined for main measures, and correlation and mediation analyses and machine learning prediction modeling were performed.
Results
Executive deficits were associated with decreased FA, increased ReHo, and elevated IL-1β and IL-6 levels across MPDs, compared to controls. FA and ReHo alterations in fronto-limbic-striatal regions contributed to executive deficits. IL-1β mediated the association between FA and cognition, and IL-6 mediated the relationship between ReHo and cognition. Executive cognition was better predicted by both brain connectivity and cytokine measures than either one alone for FA-IL-1β and ReHo-IL-6.
Conclusions
Transdiagnostic associations among brain connectivity, inflammation, and executive cognition exist across MPDs, implicating common neurobiological substrates and mechanisms for executive deficits in MPDs. Further, inflammation-related brain dysconnectivity within fronto-limbic-striatal regions may represent a transdiagnostic dimension underlying executive dysfunction that could be leveraged to advance treatment.
To set the sleeping mode for the Yutu-2 rover, a visual pose prediction algorithm including terrain reconstruction and pose estimation was first studied. The terrain reconstruction precision is affected by using only the stereo navigation camera (Navcam) images and the rotation angles of the mast. However, the hazard camera (Hazcam) pose is fixed, and an image network was constructed by linking all of the Navcam and Hazcam stereoimages. Then, the Navcam pose was refined based on a multiview block bundle adjustment. The experimental results show that the mean absolute errors of the check points in the proposed algorithm were 10.4 mm over the range of
$\boldsymbol{L}$
from 2.0 to 6.1 m, and the proposed algorithm achieved good prediction results for the rover pose (the average differences of the values of the pitch angle and the roll angle were −0.19 degrees and 0.29 degrees, respectively). Under the support of the proposed algorithm, engineers have completed the remote setting of the sleeping mode for Yutu-2 successfully in the Chang’e-4 mission operations.
The role of neurological proteins in the development of bipolar disorder (BD) and schizophrenia (SCZ) remains elusive now. The current study aims to explore the potential genetic correlations of plasma neurological proteins with BD and SCZ.
Methods:
By using the latest genome-wide association study (GWAS) summary data of BD and SCZ (including 41,917 BD cases, 11,260 SCZ cases, and 396,091 controls) derived from the Psychiatric GWAS Consortium website (PGC) and a recently released GWAS of neurological proteins (including 750 individuals), we performed a linkage disequilibrium score regression (LDSC) analysis to detect the potential genetic correlations between the two common psychiatric disorders and each of the 92 neurological proteins. Two-sample Mendelian randomisation (MR) analysis was then applied to assess the bidirectional causal relationship between the neurological proteins identified by LDSC, BD and SCZ.
Results:
LDSC analysis identified one neurological protein, NEP, which shows suggestive genetic correlation signals for both BD (coefficient = −0.165, p value = 0.035) and SCZ (coefficient = −0.235, p value = 0.020). However, those association did not remain significant after strict Bonferroni correction. Two sample MR analysis found that there was an association between genetically predicted level of NEP protein, BD (odd ratio [OR] = 0.87, p value = 1.61 × 10−6) and SCZ (OR = 0.90, p value = 4.04 × 10−6). However, in the opposite direction, there is no genetically predicted association between BD, SCZ, and NEP protein level.
Conclusion:
This study provided novel clues for understanding the genetic effects of neurological proteins on BD and SCZ.
Mounting evidence showed that insula contributed to the neurobiological mechanism of suicidal behaviors in bipolar disorder (BD). However, no studies have analyzed the dynamic functional connectivity (dFC) of insular Mubregions and its association with personality traits in BD with suicidal behaviors. Therefore, we investigated the alterations of dFC variability in insular subregions and personality characteristics in BD patients with a recent suicide attempt (SA).
Methods
Thirty unmedicated BD patients with SA, 38 patients without SA (NSA) and 35 demographically matched healthy controls (HCs) were included. The sliding-window analysis was used to evaluate whole-brain dFC for each insular subregion seed. We assessed between-group differences of psychological characteristics on the Minnesota Multiphasic Personality Inventory-2. Finally, a multivariate regression model was adopted to predict the severity of suicidality.
Results
Compared to NSA and HCs, the SA group exhibited decreased dFC variability values between the left dorsal anterior insula and the left anterior cerebellum. These dFC variability values could also be utilized to predict the severity of suicidality (r = 0.456, p = 0.031), while static functional connectivity values were not appropriate for this prediction. Besides, the SA group scored significantly higher on the schizophrenia clinical scales (p < 0.001) compared with the NSA group.
Conclusions
Our findings indicated that the dysfunction of insula–cerebellum connectivity may underlie the neural basis of SA in BD patients, and highlighted the dFC variability values could be considered a neuromarker for predictive models of the severity of suicidality. Moreover, the psychiatric features may increase the vulnerability of suicidal behavior.
Athetis lepigone Möschler (Lepidoptera, Noctuidae) is a common maize pest in Europe and Asia. However, there is no long-term effective management strategy is available yet to suppress its population. Adults rely heavily on olfactory cues to locate their optimal host plants and oviposition sites. Pheromone-binding proteins (PBPs) are believed to be responsible for recognizing and transporting different odorant molecules to interact with receptor membrane proteins. In this study, the ligand-binding specificities of two AlepPBPs (AlepPBP2 and AlepPBP3) for sex pheromone components and host plant (maize) volatiles were measured by fluorescence ligand-binding assay. The results demonstrated that AlepPBP2 had a high affinity with two pheromones [(Z)-7-dodecenyl acetate, Ki = 1.11 ± 0.1 μM, (Z)-9-tetradecenyl acetate, Ki = 1.32 ± 0.15 μM] and ten plant volatiles, including (-)-limonene, α-pinene, myrcene, linalool, benzaldehyde, nonanal, 2-hexanone, 3-hexanone, 2-heptanone and 6-methyl-5-hepten-2-one. In contrast, we found that none of these chemicals could bind to AlepPBP3. Our results clearly show no significant differences in the functional characterization of the binding properties between AlepPBP2 and AlepPBP3 to sex pheromones and host plant volatiles. Furthermore, molecular docking was employed for further detail on some crucial amino acid residues involved in the ligand-binding of AlepPBP2. These findings will provide valuable information about the potential protein binding sites necessary for protein-ligand interactions which appear as attractive targets for the development of novel technologies and management strategies for insect pests.
Evidence of couples’ BMI and its influence on birth weight is limited and contradictory. Therefore, this study aims to assess the association between couple’s preconception BMI and the risk of small for gestational age (SGA)/large for gestational age (LGA) infant, among over 4·7 million couples in a retrospective cohort study based on the National Free Pre-pregnancy Checkups Project (NFPCP) between December 1, 2013 and November 30, 2016 in China. Among the live births, 256,718 (5·44%) SGA events and 506,495 (10·73%) LGA events were documented, respectively. After adjusting for confounders, underweight men had significantly higher risk [OR 1·17 95%CI (1·15-1·19)] of SGA infants compared with men with normal BMI, while a significant and increased risk of LGA infants was obtained for overweight and obese men [OR 1·08 (95% CI: 1·06-1·09); OR 1·19 (95%CI 1·17-1·20)] respectively. The restricted cubic spline (RCS) result revealed a non-linearly decreasing dose-response relationship of paternal BMI (less than 22·64) with SGA. Meanwhile, a non-linearly increasing dose-response relationship of paternal BMI (more than 22·92) with LGA infants was observed. Moreover, similar results about the association between maternal preconception BMI and SGA/LGA infants were obtained. Abnormal preconception BMIs in either women or men were associated with increased risk of SGA/LGA infants, respectively. Overall, couple’s abnormal weight before pregnancy may be an important preventable risk factor for SGA/LGA infants.
We address a challenge of active flow control: the optimization of many actuation parameters guaranteeing fast convergence and avoiding suboptimal local minima. This challenge is addressed by a new optimizer, called the explorative gradient method (EGM). EGM alternatively performs one exploitive downhill simplex step and an explorative Latin hypercube sampling iteration. Thus, the convergence rate of a gradient based method is guaranteed while, at the same time, better minima are explored. For an analytical multi-modal test function, EGM is shown to significantly outperform the downhill simplex method, the random restart simplex, Latin hypercube sampling, Monte Carlo sampling and the genetic algorithm. EGM is applied to minimize the net drag power of the two-dimensional fluidic pinball benchmark with three cylinder rotations as actuation parameters. The net drag power is reduced by 29 % employing direct numerical simulations at a Reynolds number of $100$ based on the cylinder diameter. This optimal actuation leads to 52 % drag reduction employing Coanda forcing for boat tailing and partial stabilization of vortex shedding. The price is an actuation energy corresponding to 23 % of the unforced parasitic drag power. EGM is also used to minimize drag of the $35^\circ$ slanted Ahmed body employing distributed steady blowing with 10 inputs. 17 % drag reduction are achieved using Reynolds-averaged Navier–Stokes simulations at the Reynolds number $Re_H=1.9 \times 10^5$ based on the height of the Ahmed body. The wake is controlled with seven local jet-slot actuators at all trailing edges. Symmetric operation corresponds to five independent actuator groups at top, middle, bottom, top sides and bottom sides. Each slot actuator produces a uniform jet with the velocity and angle as free parameters, yielding 10 actuation parameters as free inputs. The optimal actuation emulates boat tailing by inward-directed blowing with velocities which are comparable to the oncoming velocity. We expect that EGM will be employed as efficient optimizer in many future active flow control plants as alternative or augmentation to pure gradient search or explorative methods.
The article aims to estimate and forecast the transmissibility of shigellosis and explore the association of meteorological factors with shigellosis. The mathematical model named Susceptible–Exposed–Symptomatic/Asymptomatic–Recovered–Water/Food (SEIARW) was used to explore the feature of shigellosis transmission based on the data of Wuhan City, China, from 2005 to 2017. The study applied effective reproduction number (Reff) to estimate the transmissibility. Daily meteorological data from 2008 to 2017 were used to determine Spearman's correlation with reported new cases and Reff. The SEIARW model fit the data well (χ2 = 0.00046, p > 0.999). The simulation results showed that the reservoir-to-person transmission of the shigellosis route has been interrupted. The Reff would be reduced to a transmission threshold of 1.00 (95% confidence interval (CI) 0.82–1.19) in 2035. Reducing the infectious period to 11.25 days would also decrease the value of Reff to 0.99. There was a significant correlation between new cases of shigellosis and atmospheric pressure, temperature, wind speed and sun hours per day. The correlation coefficients, although statistically significant, were very low (<0.3). In Wuhan, China, the main transmission pattern of shigellosis is person-to-person. Meteorological factors, especially daily atmospheric pressure and temperature, may influence the epidemic of shigellosis.
Insulin-like growth factor 1 receptor (IGF1R) is a cell surface receptor, belonging to the tyrosine kinase receptor superfamily. IGF1R plays a role not only in normal cell development but also in malignant transformation, which has become a candidate therapeutic target for the treatment of human cancer. This study aimed to explore insertions and deletions (indels) in IGF1R gene and investigate their association with growth traits in four Chinese cattle breeds (Xianan cattle, Jinnan cattle, Qinchuan cattle and Nanyang cattle). The current paper identified a 28-bp indel by polymerase chain reaction within IGF1R gene. The analysis showed that there was a significant correlation between the locus and the hucklebone width of Nanyang cattle in four periods, in which it was highly correlated at 6, 12 and 18 months. At the age of 6 months, it was also significantly correlated with body height, body weight and body length. Association analysis showed that the locus in Jinnan cattle was extremely significantly correlated with body slanting length and body weight, and significantly correlated with chest circumference. There was no significant correlation between this locus and growth traits of Xianan cattle and Qinchuan cattle. The detected indel in the IGF1R gene was significantly associated with growth traits in Jinnan and Nanyang cattle, and could be used as a molecular marker for growth trait selection.
Based on hubs of neural circuits associated with addiction and their degree centrality (DC), this study aimed to construct the addiction-related brain networks for patients diagnosed with heroin dependence undertaking stable methadone maintenance treatment (MMT) and further prospectively identify the ones at high risk for relapse with cluster analysis.
Methods
Sixty-two male MMT patients and 30 matched healthy controls (HC) underwent brain resting-state functional MRI data acquisition. The patients received 26-month follow-up for the monthly illegal-drug-use information. Ten addiction-related hubs were chosen to construct a user-defined network for the patients. Then the networks were discriminated with K-means-clustering-algorithm into different groups and followed by comparative analysis to the groups and HC. Regression analysis was used to investigate the brain regions significantly contributed to relapse.
Results
Sixty MMT patients were classified into two groups according to their brain-network patterns calculated by the best clustering-number-K. The two groups had no difference in the demographic, psychological indicators and clinical information except relapse rate and total heroin consumption. The group with high-relapse had a wider range of DC changes in the cortical−striatal−thalamic circuit relative to HC and a reduced DC in the mesocorticolimbic circuit relative to the low-relapse group. DC activity in NAc, vACC, hippocampus and amygdala were closely related with relapse.
Conclusion
MMT patients can be identified and classified into two subgroups with significantly different relapse rates by defining distinct brain-network patterns even if we are blind to their relapse outcomes in advance. This may provide a new strategy to optimize MMT.
Cognitive impairment is common in late-life depression, which may increase Alzheimer disease (AD) risk. Therefore, we aimed to investigate whether late-life major depressive disorder (MDD) has worse cognition and increases the characteristic AD neuropathology. Furthermore, we carried out a comparison between treatment-resistant depression (TRD) and non-TRD. We hypothesized that patients with late-life depression and TRD may have increased β-amyloid (Aβ) deposits in brain regions responsible for global cognition.
Methods
We recruited 81 subjects, including 54 MDD patients (27 TRD and 27 non-TRD) and 27 matched healthy controls (HCs). Neurocognitive tasks were examined, including Mini-Mental State Examination and Montreal Cognitive Assessment to detect global cognitive functions. PET with Pittsburgh compound-B and fluorodeoxyglucose were used to capture brain Aβ pathology and glucose use, respectively, in some patients.
Results
MDD patients performed worse in Montreal Cognitive Assessment (p = 0.003) and had more Aβ deposits than HCs across the brain (family-wise error-corrected p < 0.001), with the most significant finding in the left middle frontal gyrus. Significant negative correlations between global cognition and prefrontal Aβ deposits existed in MDD patients, whereas positive correlations were noted in HCs. TRD patients had significantly more deposits in the left-sided brain regions (corrected p < 0.001). The findings were not explained by APOE genotypes. No between-group fluorodeoxyglucose difference was detected.
Conclusions
Late-life depression, particularly TRD, had increased brain Aβ deposits and showed vulnerability to Aβ deposits. A detrimental role of Aβ deposits in global cognition in patients with late-onset or non-late-onset MDD supported the theory that late-life MDD could be a risk factor for AD.
ITGB1 (Integrin β1, CD29) is a member of the integrin family and has a role as a major adhesion receptor. Gastric cancer (GC) is an important cause of mortality worldwide, especially in China. As a potential cancer enhancer, the role ITGB1 plays in GC progression remains unclear. In the current study, our assay on the databases of tumoassociated gene expression and interaction found that the high expression of ITGB1 was closely correlated with the poor prognosis of GC patients. To explore the roles, ITGB1 plays in GC progression, and an ITGB1-deleted cell line (ITGB1−/−SGC7901) was generated using the CRISPR/Cas9 method. The tumor malignancy-associated cell behaviors and microstructures were detected, imaged, and analyzed using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT), wound healing, transwell, scanning electron microscopy, laser scanning confocal microscopy, and others. The results indicated that ITGB1 deletion decreased the GC cell proliferation and motility, and inhibited motility-relevant microstructures, such as pseudopodia and filopodia, markedly in ITGB1-deleted SGC7901 cells. The analysis of STRING database and western blots indicated that ITGB1 contributes to the malignancy of GC mediated by Src-mediated FAK/PI3K/Akt signaling pathways. Taken together, the results showed that ITGB1 may be a potential targeting marker for GC diagnosis and therapy in the future.
Schizophrenia is a severe and complex psychiatric disorder that needs treatment based on extensive experience. Antipsychotic drugs have already become the cornerstone of the treatment for schizophrenia; however, the therapeutic effect is of significant variability among patients, and only around a third of patients with schizophrenia show good efficacy. Meanwhile, drug-induced metabolic syndrome and other side-effects significantly affect treatment adherence and prognosis. Therefore, strategies for drug selection are desperately needed. In this study, we will perform pharmacogenomics research and set up an individualised preferred treatment prediction model.
Aims
We aim to create a standard clinical cohort, with multidimensional index assessment of antipsychotic treatment for patients with schizophrenia.
Method
This trial is designed as a randomised clinical trial comparing treatment with different kinds of antipsychotics. A total sample of 2000 patients with schizophrenia will be recruited from in-patient units from five clinical research centres. Using a computer-generated program, the participants will be randomly assigned to four treatment groups: aripiprazole, olanzapine, quetiapine and risperidone. The primary outcomes will be measured as changes in the Positive and Negative Syndrome Scale of schizophrenia, which reflects the efficacy. Secondary outcomes include the measure of side-effects, such as metabolic syndromes. The efficacy evaluation and side-effects assessment will be performed at baseline, 2 weeks, 6 weeks and 3 months.
Results
This trial will assess the efficacy and side effects of antipsychotics and create a standard clinical cohort with a multi-dimensional index assessment of antipsychotic treatment for schizophrenia patients.
Conclusion
This study aims to set up an individualized preferred treatment prediction model through the genetic analysis of patients using different kinds of antipsychotics.
Environmental hypoxia exposure causes fertility problems in human and animals. Compelling evidence suggests that chronic hypoxia impairs spermatogenesis and reduces sperm motility. However, it is unclear whether paternal hypoxic exposure affects fertilization and early embryo development. In the present study, we exposed male mice to high altitude (3200 m above sea level) for 7 or 60 days to evaluate the effects of hypoxia on sperm quality, zygotic DNA methylation and blastocyst formation. Compared with age-matched controls, hypoxia-treated males exhibited reduced fertility after mating with normoxic females as a result of defects in sperm motility and function. Results of in vitro fertilization (IVF) experiments revealed that 60 days’ exposure significantly reduced cleavage and blastocyst rates by 30% and 70%, respectively. Immunohistochemical staining of pronuclear formation indicated that the pronuclear formation process was disturbed and expression of imprinted genes was reduced in early embryos after paternal hypoxia. Overall, the findings of this study suggested that exposing male mice to hypoxia impaired sperm function and affected key events during early embryo development in mammals.
To assess changes in dietary patterns among youths in China after COVID-19 lockdown.
Design:
This study was based on the COVID-19 Impact on Lifestyle Change Survey (COINLICS), a national retrospective survey established in early May 2020. The questionnaire was distributed through social media platforms. The sociodemographic information and routine dietary patterns before and after lockdown of participants were investigated. t tests and χ2 tests were used to compare the differences in consumption patterns of twelve major food groups and beverages between sex and across educational levels before and after lockdown. Factor analysis was employed to obtain the main dietary patterns.
Settings:
China.
Participants:
A total of 10 082 youths.
Results:
A significant decrease was observed in the average weekly frequency of rice intake, while significant increases were observed in the frequency of intake of wheat products, other staple foods, fish, eggs, fresh vegetables, preserved vegetables, fresh fruit and dairy products (all P values < 0·01). Heterogeneities of average weekly frequency existed between sex and across educational levels to different extents. The three main dietary patterns derived were loaded most heavily on dairy products, rice and wheat products, separately; the rice pattern became more dominant than the wheat products pattern after lockdown. The frequency of sugar-sweetened beverage consumption had decreased, while the frequency of other beverages had increased.
Conclusions:
Our timely survey would inform policymakers and health professionals of these significant changes in youths’ dietary patterns after lockdown, with heterogeneities observed to different extents between sex and across educational levels, for better policy-making and public health practice.
Anticipatory pleasure deficits are closely correlated with negative symptoms in schizophrenia, and may be found in both clinical and subclinical populations along the psychosis continuum. Prospection, which is an important component of anticipatory pleasure, is impaired in individuals with social anhedonia (SocAnh). In this study, we examined the neural correlates of envisioning positive future events in individuals with SocAnh.
Methods
Forty-nine individuals with SocAnh and 33 matched controls were recruited to undergo functional MRI scanning, during which they were instructed to simulate positive or neutral future episodes according to cue words. Two stages of prospection were distinguished: construction and elaboration.
Results
Reduced activation at the caudate and the precuneus when prospecting positive (v. neutral) future events was observed in individuals with SocAnh. Furthermore, compared with controls, increased functional connectivity between the caudate and the inferior occipital gyrus during positive (v. neutral) prospection was found in individuals with SocAnh. Both groups exhibited a similar pattern of brain activation for the construction v. elaboration contrast, regardless of the emotional context.
Conclusions
Our results provide further evidence on the neural mechanism of anticipatory pleasure deficits in subclinical individuals with SocAnh and suggest that altered cortico-striatal circuit may play a role in anticipatory pleasure deficits in these individuals.
Late Mesozoic igneous rocks are important for deciphering the Mesozoic tectonic setting of NE China. In this paper, we present whole-rock geochemical data, zircon U–Pb ages and Lu–Hf isotope data for Early Cretaceous volcanic rocks from the Tulihe area of the northern Great Xing’an Range (GXR), with the aim of evaluating the petrogenesis and genetic relationships of these rocks, inferring crust–mantle interactions and better constraining extension-related geodynamic processes in the GXR. Zircon U–Pb ages indicate that the rhyolites and trachytic volcanic rocks formed during late Early Cretaceous time (c. 130–126 Ma). Geochemically, the highly fractionated I-type rhyolites exhibit high-K calc-alkaline, metaluminous to weakly peraluminous characteristics. They are enriched in light rare earth elements (LREEs) and large-ion lithophile elements (LILEs) but depleted in high-field-strength elements (HFSEs), with their magmatic zircons ϵHf(t) values ranging from +4.1 to +9.0. These features suggest that the rhyolites were derived from the partial melting of a dominantly juvenile, K-rich basaltic lower crust. The trachytic volcanic rocks are high-K calc-alkaline series and exhibit metaluminous characteristics. They have a wide range of zircon ϵHf(t) values (−17.8 to +12.9), indicating that these trachytic volcanic rocks originated from a dominantly lithospheric-mantle source with the involvement of asthenospheric mantle materials, and subsequently underwent extensive assimilation and fractional crystallization processes. Combining our results and the spatiotemporal migration of the late Early Cretaceous magmatic events, we propose that intense Early Cretaceous crust–mantle interaction took place within the northern GXR, and possibly the whole of NE China, and that it was related to the upwelling of asthenospheric mantle induced by rollback of the Palaeo-Pacific flat-subducting slab.
This study aimed to evaluate to what extent the different interval times between trophectoderm (TE) biopsy and vitrification influence the clinical outcomes in preimplantation genetic testing (PGT) cycles. Patients who underwent frozen embryo transfer (FET) after PGT between 2015 and 2019 were recruited. In total, 297 cycles with single day 5 euploid blastocyst transfer were included. These cycles were divided into three groups according to the interval times: <1 h group, 1–2 h group, and ≥2 h group. Blastocyst survival, clinical pregnancy, miscarriage, and ongoing pregnancy rates were compared. The results showed that, in PGT-SR cycles, survival rate in the ≥2 h group (96.72%) was significantly lower than in the <1 h group (100%, P = 0.047). The clinical pregnancy rate in the ≥2 h group was 55.93%, significantly lower than in the <1 h group (74.26%, P = 0.017). The ongoing pregnancy rates in the 1–2 h group and the ≥2 h group were 48.28% and 47.46%, respectively, significantly lower than that in the <1 h group (67.33%, P < 0.05). The miscarriage rate in the 1–2 h group was 18.42%, significantly higher than that in the <1 h group (5.33%, P = 0.027). In PGT-A cycles, the clinical pregnancy and ongoing pregnancy rates in the <1 h group were 67.44% and 53.49%, respectively, higher than that in the 1–2 h group (52.94%, 47.06%, P > 0.05) and the ≥2 h group (52.63%, 36.84%, P > 0.05). In conclusion, vitrification of blastocysts beyond 1 h after biopsy significantly influences embryo survival and clinical outcomes and is therefore not recommended.