Suppose that
$0<|\unicode[STIX]{x1D70C}|<1$
and
$m\geqslant 2$
is an integer. Let
$\unicode[STIX]{x1D707}_{\unicode[STIX]{x1D70C},m}$
be the self-similar measure defined by
$\unicode[STIX]{x1D707}_{\unicode[STIX]{x1D70C},m}(\cdot )=\frac{1}{m}\sum _{j=0}^{m-1}\unicode[STIX]{x1D707}_{\unicode[STIX]{x1D70C},m}(\unicode[STIX]{x1D70C}^{-1}(\cdot )-j)$
. Assume that
$\unicode[STIX]{x1D70C}=\pm (q/p)^{1/r}$
for some
$p,q,r\in \mathbb{N}^{+}$
with
$(p,q)=1$
and
$(p,m)=1$
. We prove that if
$(q,m)=1$
, then there are at most
$m$
mutually orthogonal exponential functions in
$L^{2}(\unicode[STIX]{x1D707}_{\unicode[STIX]{x1D70C},m})$
and
$m$
is the best possible. If
$(q,m)>1$
, then there are any number of orthogonal exponential functions in
$L^{2}(\unicode[STIX]{x1D707}_{\unicode[STIX]{x1D70C},m})$
.