We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The dependence of fishbone cycle on energetic particle intensity has been investigated in EAST low-magnetic-shear plasmas. It is observed that the fishbone mode growth rate, saturation amplitude as well as fishbone cycle frequency clearly increase with increasing neutral beam injection (NBI) power. Moreover, enhanced electron density and temperature perturbations as well as energetic particle loss were observed with greater injected NBI power. Simulation results using M3D-K code show that as the NBI power increases, the resonant frequency and the energy of the resonant particles become higher, and the saturation amplitude of the mode also changes, due to the non-perturbative energetic particle contribution. The relationship between the calculated energetic particle pressure ratio and fishbone cycle frequency is obtained as ${f_{\textrm{FC}}} = 2.2{(1000{\beta _{\textrm{ep,calc}}} - 0.1)^{5.9 \pm 0.5}}$. Results consistent with the experimental observations have been achieved based on a predator–prey model.
In this paper, the generation of relativistic electron mirrors (REMs) and the reflection of an ultra-short laser off this mirrors are discussed, applying two-dimensional particle-in-cell (2D-PIC) simulations. REMs with ultra-high acceleration and expanding velocity can be produced from a solid nanofoil illuminated normally by an ultra-intense femtosecond laser pulse with a sharp rising edge. Chirped attosecond pulse can be produced through the reflection of a counter-propagating probe laser off the accelerating REM. In the electron moving frame, the plasma frequency of the REM keeps decreasing due to its rapidly expanding. The laser frequency, on the contrary, keeps increasing due to the acceleration of REM and the relativistic Doppler shift from the lab frame to the electron moving frame. Within an ultra-short time interval, the two frequencies will be equal in the electron moving frame, which leads the resonance between laser and REM. The reflected radiation near this interval and the corresponding spectra will be amplified due to the resonance. Through adjusting the arriving time of the probe laser, certain part of the reflected field could be selectively amplified or depressed, leading to the selectively adjusting of the corresponding spectra.
The FNDC5 gene encodes the fibronectin type III domain-containing protein 5 that is a membrane protein mainly expressed in skeletal muscle, and the FNDC5 rs3480 polymorphism may be associated with liver disease severity in non-alcoholic fatty liver disease (NAFLD). We investigated the influence of the FNDC5 rs3480 polymorphism on the relationship between sarcopenia and the histological severity of NAFLD. A total of 370 adult individuals with biopsy-proven NAFLD were studied. The association between the key exposure sarcopenia and the outcome liver histological severity was investigated by binary logistic regression. Stratified analyses were undertaken to examine the impact of FNDC5 rs3480 polymorphism on the association between sarcopenia and the severity of NAFLD histology. Patients with sarcopenia had more severe histological grades of steatosis and a higher prevalence of significant fibrosis and definite non-alcoholic steatohepatitis than those without sarcopenia. There was a significant association between sarcopenia and significant fibrosis (adjusted OR 2·79, 95 % CI 1·31, 5·95, P = 0·008), independent of established risk factors and potential confounders. Among patients with sarcopenia, significant fibrosis occurred more frequently in the rs3480 AA genotype carriers than in those carrying the FNDC5 rs3480 G genotype (43·8 v. 17·2 %, P = 0·031). In the association between sarcopenia and liver fibrosis, there was a significant interaction between the FNDC5 genotype and sarcopenia status (P value for interaction = 0·006). Sarcopenia is independently associated with significant liver fibrosis, and the FNDC5 rs3480 G variant influences the association between sarcopenia and liver fibrosis in patients with biopsy-proven NAFLD.
Major depressive disorder (MDD) is a common debilitating disorder characterized by impaired spontaneous brain activity, yet little is known about its alterations in dynamic properties and the molecular mechanisms associated with these changes.
Methods
Based on the resting-state functional MRI data of 65 first-episode, treatment-naïve patients with MDD and 66 healthy controls, we compared dynamic regional homogeneity (dReHo) of spontaneous brain activity between the two groups, and we investigated gene expression profiles associated with dReHo alterations in MDD by leveraging transcriptional data from the Allen Human Brain Atlas and weighted gene co-expression network analysis.
Results
Compared with healthy controls, patients with MDD consistently showed reduced dReHo in both fusiform gyri and in the right temporal pole and hippocampus. The expression profiles of 16 gene modules were correlated with dReHo alterations in MDD. These gene modules were enriched for various biological process terms, including immune, synaptic signalling, ion channels, mitochondrial function and protein metabolism, and were preferentially expressed in different cell types.
Conclusions
Patients with MDD have reduced dReHo in brain areas associated with emotional and cognitive regulation, and these changes may be related to complex polygenetic and polypathway mechanisms.
Shifts in the maternal gut microbiota have been implicated in the development of gestational diabetes mellitus (GDM). Understanding the interaction between gut microbiota and host glucose metabolism will provide a new target of prediction and treatment. In this nested case-control study, we aimed to investigate the causal effects of gut microbiota from GDM patients on the glucose metabolism of germ-free (GF) mice. Stool and peripheral blood samples, as well as clinical information, were collected from 45 GDM patients and 45 healthy controls (matched by age and prepregnancy body mass index (BMI)) in the first and second trimester. Gut microbiota profiles were explored by next-generation sequencing of the 16S rRNA gene, and inflammatory factors in peripheral blood were analyzed by enzyme-linked immunosorbent assay. Fecal samples from GDM and non-GDM donors were transferred to GF mice. The gut microbiota of women with GDM showed reduced richness, specifically decreased Bacteroides and Akkermansia, as well as increased Faecalibacterium. The relative abundance of Akkermansia was negatively associated with blood glucose levels, and the relative abundance of Faecalibacterium was positively related to inflammatory factor concentrations. The transfer of fecal microbiota from GDM and non-GDM donors to GF mice resulted in different gut microbiota colonization patterns, and hyperglycemia was induced in mice that received GDM donor microbiota. These results suggested that the shifting pattern of gut microbiota in GDM patients contributed to disease pathogenesis.
To explore if there is association between vitamin D supplementation through cod liver oil ingestion around the periconceptional period and the risk of developing severe CHD in offspring. Furthermore, we would examine the interaction between vitamin D and folic acid supplementation in the association.
Methods:
A case–control study was conducted in Shanghai Children’s Medical Center, in which, a total of 262 severe CHD cases versus 262 controls were recruited through June 2016 to December 2017. All children were younger than 2 years. To reduce potential selection bias and to minimise confounding effects, propensity score matching was applied.
Results:
After propensity score matching, vitamin D supplementation seemed to be associated with decreased odds ratio of severe CHD (odds ratio = 0.666; 95% confidence intervals: 0.449–0.990) in the multivariable conditional logistic analysis. Furthermore, we found an additive interaction between vitamin D and folic acid supplementation (relative excess risk due to interaction = 0.810, 95% confidence intervals: 0.386–1.235) in the association.
Conclusion:
The results suggested that maternal vitamin D supplementation could decrease the risk of offspring severe CHD; moreover, it could strengthen the protective effect of folic acid. The significance of this study lies in providing epidemiological evidence that vitamin D supplementation around the periconceptional period could be a potential nutritional intervention strategy to meet the challenge of increasing CHD.
In this paper, a high selectivity wideband 180° phase shifter (PS) with the functionality of vertical transition is presented. The whole circuit is realized based on the hybrid microstrip/slotline (SL) structure. By introducing the short-circuited microstrip stepped-impedance resonators, two transmission zeros are created to improve the selectivity of the PS. With the SL in the center ground layer, a frequency independent 180° PS can be obtained. The even/odd-mode equivalent circuits of the proposed PS are analyzed to guide the design. Finally, a practical wideband 180° PS with high filtering selectivity is designed and fabricated to verify the design theory.
Introduction: The present study was conducted to examine yogurt consumption patterns and investigate associations between yogurt consumption and nutrient intake using data from the National Diet and Nutrition Survey (NDNS) rolling programme in the United Kingdom.
Materials and Methods: Children aged 1.5–18 years old (N = 2564) and adults aged 19 years or older (N = 2705) from the NDNS 2012/13–2015/16 were included in the study. The average of four-day food diary data was used for analysis. Yogurt included all food items from the yogurt, fromage frais and dairy dessert food group, excluding dairy dessert products. Participants were classified as yogurt eaters if they reported consumption of yogurt at least once during the four days. Percentage contribution of yogurt to daily intake of nutrients in yogurt eaters was calculated. Multiple linear regression analyses for surveys were used to compare differences in energy and nutrient intake between yogurt eaters and non-eaters, adjusting for sociodemographic characteristics. Energy intake was also adjusted for in nutrient data analysis.
Results: The prevalence of yogurt consumption was 53% in children and 39% in adults. The daily intake of yogurt was 105 g and 132 g, respectively. Yogurt is an important source of calcium and riboflavin in children and adults, as well as vitamin D in children, accounting for over 15% of daily intake of these nutrients. Compared to non-eaters, yogurt eaters had significantly higher energy intake in both children and adults; they also had significantly higher intake of protein, fiber, calcium, magnesium, phosphorus, potassium, folate, riboflavin, thiamin, and vitamin C, as well as significantly lower intake of sodium. Child yogurt eaters also had significantly higher intake of vitamin A and vitamin B12, and lower intake of total fat, whereas adult yogurt eaters had significantly higher intake of carbohydrate, iron, zinc, vitamin D and vitamin E, compared to non-eaters. Both yogurt eaters in children and adults had higher intake of total sugar; nonetheless, non-milk extrinsic sugar intake did not differ by yogurt consumption status in children, and it was significantly lower in adult yogurt eaters. Saturated fat intake did not differ by yogurt consumption status in children and adults.
Discussion: Yogurt is an important dietary source of several nutrients in the United Kingdom. Its consumption was positively associated with intake of total energy and many nutrients to encourage, but not positively associated with intake of sodium, total fat, saturated fat, and non-milk extrinsic sugar in both children and adults.
Ready to eat cereal (RTEC) is a nutrient dense food in a typical western diet. Studies have reported better nutrient intake associated with RTEC consumption in other countries, however, little is known in the United Kingdom. The objective of the study was to examine consumption patterns of RTEC and to investigate associations between RTEC consumption and nutrient intake in a nationally representative sample in the United Kingdom.
Materials and Methods
Children aged 1.5–18 years old (N = 2564) and adults aged 19 years or older (N = 2705) from the National Diet and Nutrition Survey rolling programme 2012/13–2015/16 were included in the study. The average of four-day food diary data was used for analysis. RTEC included all food items from the high fiber breakfast cereals and other breakfast cereals, excluding porridge and instant hot oat cereals. Participants were classified as RTEC eaters if they reported consumption of RTEC at least once during the four days. Percentage contribution of RTEC to daily intake of nutrients in RTEC eaters was calculated. Differences in energy and nutrient intake between RTEC eaters and non-eaters were compared using multiple linear regression analyses for surveys, adjusting for age, gender, and equivalized income level. Energy intake was also included as a covariate in the analyses of nutrients intake.
Results
About 75% of children were RTEC eaters, whereas 52% of adults reported RTEC consumption. Their daily intake of RTEC were 35.1 g and 42.8 g, respectively. RTEC is a critical source of several key vitamins and minerals. For example, RTEC contributed to over 20% of daily intake of iron, folate, vitamin D, riboflavin, and thiamin in both children and adults who consumed RTEC. Compared to non-eaters, both child and adult RTEC eaters had significantly higher intake of total energy, carbohydrate, fiber, calcium, potassium, iron, phosphorus, magnesium, niacin, folate, riboflavin, thiamin, vitamin B6, vitamin B12, as well as significantly lower intake of sodium and total fat. Adult RTEC eaters also had higher intake of vitamin C and vitamin D. There was no difference in intake of non-milk extrinsic sugar by RTEC consumption status in both children and adults, although total sugar intake was higher in adult RTEC eaters.
Discussion
RTEC is an important dietary source of key nutrients in the United Kingdom. Consumption of RTEC is associated with higher intake of nutrients to encourage and lower intake of nutrients to limit, in both children and adults in the United Kingdom.
Robots often need to accomplish some complex tasks such as surveillance, response and obstacle avoidance. In this paper, a dynamic search method is proposed to generate optimal robot trajectories satisfying complex task requirement in uncertain environment. The LTL-A* algorithm is presented to generate a global optimal path and the A* algorithm is provided to modify the global optimal path. The task is specified by a linear temporal logic (LTL) formula, and a weighted transition system according to the known information in uncertain environment is modeled to describe the robot motion. Subsequently, a product automaton is constructed by combining the transition system with the task requirement. Based on the product automaton, the LTL-A* algorithm is proposed to generate a global optimal path. The local path planning based on the A* algorithm is employed to deal with the environment change during the process of tracking the global optimal path for the robot. The results of the simulation and experiments show that the proposed method can not only meet the complex task requirement in uncertain environment but also improve the search efficiency.
A compact wideband out-of-phase power divider (PD) with improved isolation performance is proposed. This divider is formed by connecting an additional stub for isolation to output ports of a traditional Marchand balun with a defected ground structure (DGS) been used. To verify the design, a prototype divider is fabricated and tested. The measured results validate the 53.86% band-width centered at 3.43 GHz with more than 15 dB return loss at all ports, more than 17 dB isolation, respectively.
In a rice (Oryza sativa L.)–wheat (Triticum aestivum L.) rotation system, a study was conducted to determine the effects of different fertilization regimens (no fertilization, replacement of a portion of chemical fertilizer with composted pig manure, chemical fertilizer only, and straw return combined with chemical fertilizer) on the weed communities and wheat yields after 4 and 5 yr. The impact of the long-term recurrent fertilization regimen initiated in 2010 on the composition and diversity of weed communities and the impact of the components and total amount of fertilizer on wheat yields were assessed in 2014 and 2015. Totals of 19 and 16 weed species were identified in experimental wheat fields in 2014 and 2015, respectively, but the occurrence of weed species varied according to the fertilization regimen. American sloughgrass [Beckmannia syzigachne (Steud.) Fernald], water starwort [Myosoton aquaticum (L.) Moench], and lyrate hemistepta (Hemistepta lyrata Bunge.) were adapted to all fertilization treatments and were the dominant weed species in the experimental wheat fields. The greatest number of weed species were observed under the no-fertilization treatment, in which 40% of the weed community was composed of broadleaf weeds and the lowest wheat yields were obtained. With fertilizer application, the number of weed species was reduced, the height of weeds increased significantly, the density of broadleaf weeds was significantly reduced, the biodiversity indices of weed communities decreased significantly, and higher wheat yields were obtained. Only the chemical fertilizer plus composted pig manure treatment and the chemical fertilizer–only treatment increased the density of grassy weeds and the total weed community density. The treatment with chemical fertilizer only also resulted in the highest density of B. syzigachne. Rice straw return combined with chemical fertilizer yielded the lowest total weed density, which suggests that it inhibited occurrence of weeds. The different fertilizer regimens not only affected the weed species composition, distribution, and diversity, but also the weed density. Our study provides new information from a rice–wheat rotation system on the relationship between soil amendments and agricultural weed infestation.
To assess the effect of famine exposure during early life on dietary patterns, chronic diseases, and the interaction effect between famine exposure and dietary patterns on chronic diseases in adulthood.
Design
Cross-sectional study. Dietary patterns were derived by factor analysis. Multivariate quantile regression and log-binomial regression were used to evaluate the impact of famine exposure on dietary patterns, chronic diseases and the interaction effect between famine exposure and dietary patterns on chronic diseases, respectively.
Setting
Hefei, China.
Participants
Adults aged 45–60 years (n 939).
Results
‘Healthy’, ‘high-fat and high-salt’, ‘Western’ and ‘traditional Chinese’ dietary patterns were identified. Early-childhood and mid-childhood famine exposure were remarkably correlated with high intake of the traditional Chinese dietary pattern. Compared with the non-exposed group (prevalence ratio (PR); 95 % CI), early-childhood (3·13; 1·43, 6·84) and mid-childhood (2·37; 1·05, 5·36) exposed groups showed an increased PR for diabetes, and the early-childhood (2·07; 1·01, 4·25) exposed group showed an increased PR for hypercholesterolaemia. Additionally, relative to the combination of non-exposed group and low-dichotomous high-fat and high-salt dietary pattern, the combination of famine exposure in early life and high-dichotomous high-fat and high-salt dietary pattern in adulthood had higher PR for diabetes (4·95; 1·66, 9·05) and hypercholesterolaemia (3·71; 1·73, 7·60), and significant additive interactions were observed.
Conclusions
Having suffered the Chinese famine in childhood might affect an individual’s dietary habits and health status, and the joint effect between famine and harmful dietary pattern could have serious consequences on later-life health outcomes.
The intracellular concentration of calcium ion ([Ca2+]i) is a critical regulator of cell signaling and contractility of vascular smooth muscle cells (VSMCs). In this study, we employed an atomic force microscopy (AFM) nanoindentation-based approach to investigate the role of [Ca2+]i in regulating the cortical elasticity of rat cremaster VSMCs and the ability of rat VSMCs to adhere to fibronectin (Fn) matrix. Elevation of [Ca2+]i by ionomycin treatment increased rat VSMC stiffness and cell adhesion to Fn-biofunctionalized AFM probes, whereas attenuation of [Ca2+]i by 1,2-Bis (2-aminophenoxy)ethane-N,N,N’,N’-tetraacetic acid tetrakis (acetoxymethyl ester) (BAPTA-AM) treatment decreased the mechanical and matrix adhesive properties of VSMCs. Furthermore, we found that ionomycin/BAPTA-AM treatments altered expression of α5 integrin subunits and α smooth muscle actin in rat VSMCs. These data suggest that [Ca2+]i regulates VSMC elasticity and adhesion to the extracellular matrix by a potential mechanism involving changing dynamics of the integrin–actin cytoskeleton axis.
Identifying the relative importance of urban and non-urban land-use types for potential denitrification derived N2O at a regional scale is critical for quantifying the impacts of human activities on nitrous oxide (N2O) emission under changing environments. In this study we used a regional dataset from China including 197 soil samples and six land-use types to evaluate the main predictors (land use, heavy metals, soil pH, soil moisture, substrate availability, functional and broad microbial abundances) of potential denitrification using multivariate and pathway analysis. Our results provide empirical evidence that soils on farms have the greatest potential denitrifying ability (PDA) (10.92±6.08ng N2O-N·g–1 dry soil·min–1) followed by urban soil (6.80±5.35ng N2O-N·g–1 dry soil·min–1). Our models indicate that land use (low vs. high human activity), followed by total nitrogen (TN) and heavy metals (Cu, Zn, Pb, Cd) was the most important driver of PDA. In addition, our path analysis suggests that at least part of the impacts of land use on potential denitrification were mediated via microbial abundance, soil pH and substrates including TN, dissolved organic carbon and nitrate. This study identifies the main predictors of denitrification at a regional scale which is needed to quantify the impact of human activities on ecosystem functionality under changing conditions.
A novel Gysel power divider with high power-handling capability based on half-mode substrate integrated waveguide (HMSIW) has been presented in this paper. A HMSIW ring is used and good input/output impedance matching is achieved based on HMSIW-microstrip taper transition. Two microstrip stubs are introduced in HMSIW ring to assemble two isolation resistors to improve the isolation between the output ports. The even- and odd-mode analysis method is used for the presented circuit. A prototype of the presented power divider is designed, fabricated, and measured. The measured results show a reasonable agreement with the simulated ones.