We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Drawing on the adaptive control hypothesis, we examined whether older adults’ bilingual interactional contexts of conversational exchanges would predict important indices of executive functions (EF). We assessed participants’ engagement in each bilingual interactional context – single-language, dual-language, and dense code-switching – and their performance on a series of nonverbal EF measures. Sixty-nine healthy older adults (Mage = 70.39 years; ages 60–93) were recruited from local community centers. We found that the dense code-switching context was associated with enhanced overall EF, but not individual facets of EF (inhibitory control, shifting, and updating). These findings held true when we controlled for a host of covariates. Our findings shed light on aging bilinguals’ interactional contexts as crucial bilingual experiences that modulate overall EF. Given that bilingualism is a multidimensional construct, rather than a unidimensional variable, our study underscores the importance of more fine-grained operationalisation of bilingualism when studying its impacts on EF.
Uniaxial and isothermal compression tests of kaolinite were carried out using molecular dynamics simulations. Five different temperatures (300, 400, 500, 600 and 700 K) and pressures ranging from 0.0001 to 50 GPa were selected to study the temperature and pressure effects on the mechanical properties of kaolinite. As kaolinite may undergo a phase transition at ~1572 K, a highest temperature of 700 K was chosen to avoid such structural change. The Young's modulus, strength and elastic constants of kaolinite under various temperatures were calculated, and the relative change of the elastic constant C33 with temperature was found to be almost 12 times greater than the relative change of the interlayer constant C11. The microstructures under various compressive strains were tracked and they exhibited various failure modes in three directions. The temperature and pressure effects on the mechanical properties of three crystal directions were analysed. The results showed that the Young's modulus of the z-direction is the most affected by temperature; however, the influence of temperature on the strengths of the three crystal directions was the same. In addition, the structure of the z-direction was the most sensitive to temperature under the same hydrostatic pressure due to the weak interactions between layers.
This paper explores how factional competition shapes local media's coverage of negative political news. Employing news reports that appeared in Chinese national and local newspapers (2000–2014) coupled with data on the networks of elites, we find that local bureaucrats connected to strong national leaders tend to criticize members of weaker factions in politically damaging news reports. These adverse reports indeed harm the promotion prospects of the province leaders reported on in the articles, weakening the already weak factions and expanding the relative power of the strong factions. Our findings suggest that the loyalty-based competitive behaviors of political elites further tilt an already uneven playing field across political factions and facilitate power concentration in China.
In small seeds, light often promotes germination and longer-term exposure to darkness reduces light sensitivity. In cacti inhabiting harsh environments, a rapid response to light exposure is potentially advantageous for seedling establishment. We exposed dark-imbibed seeds of the cactus Cereus repandus to doses of red (RED) light and far-red (FR) light. The seeds exhibited positive photoblastism to RED light. Although the initial levels of germination varied between seed lots, the sensitivity to increasing the RED dose did not. As little as 5 min per day for 4 d was sufficient to saturate the light requirement for germination. The effects of RED light were reversed by FR exposure as long as the interval between RED and FR did not extend to 2 d, by which time the seeds had ‘committed’ to germinate. Dark incubation for 1–2 weeks prior to RED exposure reduced light sensitivity in two seed lots, such that RED only promoted around 20% germination. Phytochrome is assumed to mediate the reversibility of the RED:FR response. High sensitivity to light spectral quality suggests that seeds of C. repandus are able to germinate quickly in high-quality microsites, but seed burial or shading may commit the seeds to form a soil seed bank. The light characteristics of the germination trait in this species are typical of many small seeded species of the drylands.
The great demographic pressure brings tremendous volume of beef demand. The key to solve this problem is the growth and development of Chinese cattle. In order to find molecular markers conducive to the growth and development of Chinese cattle, sequencing was used to determine the position of copy number variations (CNVs), bioinformatics analysis was used to predict the function of ZNF146 gene, real-time fluorescent quantitative polymerase chain reaction (qPCR) was used for CNV genotyping and one-way analysis of variance was used for association analysis. The results showed that there exists CNV in Chr 18: 47225201-47229600 (5.0.1 version) of ZNF146 gene through the early sequencing results in the laboratory and predicted ZNF146 gene was expressed in liver, skeletal muscle and breast cells, and was amplified or overexpressed in pancreatic cancer, which promoted the development of tumour through bioinformatics. Therefore, it is predicted that ZNF146 gene affects the proliferation of muscle cells, and then affects the growth and development of cattle. Furthermore, CNV genotyping of ZNF146 gene was three types (deletion type, normal type and duplication type) by Real-time fluorescent quantitative PCR (qPCR). The association analysis results showed that ZNF146-CNV was significantly correlated with rump length of Qinchuan cattle, hucklebone width of Jiaxian red cattle and heart girth of Yunling cattle. From the above results, ZNF146-CNV had a significant effect on growth traits, which provided an important candidate molecular marker for growth and development of Chinese cattle.
Based on erosion coupon tests, a sand erosion model for 17-4PH steel was developed. The developed erosion model was validated against the results of compressor erosion tests from a generic rig and from other researchers. A high-fidelity computational fluid dynamics (CFD) model of the test rig was built, a user-defined function was developed to implement the erosion model into the ANSYS CFD software, and the turbulent, two-phase flow-field in multiple reference frames was solved. The simulation results are consistent with the test results from the compressor rig and with experimental findings from other researchers. Specifically, the sand erosion blunts the leading edge, sharpens the trailing edge and increases pressure-surface roughness. The comparisons between the experimental observations and numerical results as well as a quantitative comparison with three other sand erosion models indicate that the developed sand erosion model is adequate for erosion prediction of engine components made of 17-4PH steel.
The association between executive dysfunction, brain dysconnectivity, and inflammation is a prominent feature across major psychiatric disorders (MPDs), schizophrenia, bipolar disorder, and major depressive disorder. A dimensional approach is warranted to delineate their mechanistic interplay across MPDs.
Methods
This single site study included a total of 1543 participants (1058 patients and 485 controls). In total, 1169 participants underwent diffusion tensor and resting-state functional magnetic resonance imaging (745 patients and 379 controls completed the Wisconsin Card Sorting Test). Fractional anisotropy (FA) and regional homogeneity (ReHo) assessed structural and functional connectivity, respectively. Pro-inflammatory cytokine levels [interleukin (IL)-1β, IL-6, and tumor necrosis factor-α] were obtained in 325 participants using blood samples collected with 24 h of scanning. Group differences were determined for main measures, and correlation and mediation analyses and machine learning prediction modeling were performed.
Results
Executive deficits were associated with decreased FA, increased ReHo, and elevated IL-1β and IL-6 levels across MPDs, compared to controls. FA and ReHo alterations in fronto-limbic-striatal regions contributed to executive deficits. IL-1β mediated the association between FA and cognition, and IL-6 mediated the relationship between ReHo and cognition. Executive cognition was better predicted by both brain connectivity and cytokine measures than either one alone for FA-IL-1β and ReHo-IL-6.
Conclusions
Transdiagnostic associations among brain connectivity, inflammation, and executive cognition exist across MPDs, implicating common neurobiological substrates and mechanisms for executive deficits in MPDs. Further, inflammation-related brain dysconnectivity within fronto-limbic-striatal regions may represent a transdiagnostic dimension underlying executive dysfunction that could be leveraged to advance treatment.
Frequent freezing injury greatly influences winter wheat production; thus, effective prevention and a command of agricultural production are vital. The freezing injury monitoring method integrated with ‘3S’ (geographic information systems (GIS), global positioning system (GPS) and remote sensing (RS)) technology has an unparalleled advantage. Using HuanJing (HJ)-1A/1B satellite images of a winter wheat field in Shanxi Province, China plus a field survey, crop types and winter wheat planting area were identified through repeated visual interpretations of image information and spatial analyses conducted in GIS. Six vegetation indices were extracted from processed HJ-1A/1B satellite images to determine whether the winter wheat suffered from freezing injury and its degree of severity and recovery, using change vector analysis (CVA), the freeze injury representative vegetation index and the combination of the two methods, respectively. Accuracy of the freezing damage classification results was verified by determining the impact of freezing damage on yield and quantitative analysis. The CVA and the change of normalized difference vegetation index (ΔNDVI) monitoring results were different so a comprehensive analysis of the combination of CVA and ΔNDVI was performed. The area with serious freezing injury covered 0.9% of the total study area, followed by the area of no freezing injury (3.5%), moderate freezing injury (10.2%) and light freezing injury (85.4%). Of the moderate and serious freezing injury areas, 0.2% did not recover; 1.2% of the no freezing injury and light freezing injury areas showed optimal recovery, 15.6% of the light freezing injury and moderate freezing injury areas showed poor recovery, and the remaining areas exhibited general recovery.
Axisymmetric standing waves occur across a wide range of free surface flows. When these waves reach a critical height (steepness), wave breaking and jet formation occur. For travelling surface gravity waves, wave breaking is generally considered to limit wave height and reversible wave motion. In the ocean, the behaviour of directionally spread waves lies between the limits of purely travelling (two dimensions) and axisymmetric (three dimensions). Hence, understanding wave breaking and jet formation on axisymmetric surface gravity waves is an important step in understanding extreme and breaking waves in the ocean. We examine an example of axisymmetric wave breaking and jet formation colloquially known as the ‘spike wave’, created in the FloWave circular wave tank at the University of Edinburgh, UK. We generate this spike wave with maximum crest amplitudes of 0.15–6.0 m (0.024–0.98 when made non-dimensional by characteristic radius), with wave breaking occurring for crest amplitudes greater than 1.0 m (0.16 non-dimensionalised). Unlike two-dimensional travelling waves, wave breaking does not limit maximum crest amplitude, and our measurements approximately follow the jet height scaling proposed by Ghabache et al. (J. Fluid Mech., vol. 761, 2014, pp. 206–219) for cavity collapse. The spike wave is predominantly created by linear dispersive focusing. A trough forms, then collapses producing a jet, which is sensitive to the trough's shape. The evolution of the jets that form in our experiments is predicted well by the hyperbolic jet model proposed by Longuet–Higgins (J. Fluid Mech., vol. 127, 1983, pp. 103–121), previously applied to jets forming on bubbles.
The long-distance stable transport of relativistic electron beams (REBs) in plasmas is studied by full three-dimensional particle-in-cell simulations. Theoretical analysis shows that the beam transport is mainly influenced by three transverse instabilities, where the excitation of self-modulation instability, and the suppression of the filamentation instability and the hosing instability are important to realize the beam stable transport. By modulating the transport parameters such as the electron density ratio, the relativistic Lorentz factor, the beam envelopes and the density profiles, the relativistic bunches having a smooth density profile and a length of several plasma wave periods can suppress the beam-plasma instabilities and propagate in plasmas for long distances with small energy losses. The results provide a reference for the research of long-distance and stable transport of REBs, and would be helpful for new particle beam diagnosis technology and space active experiments.
The epidemic of tuberculosis has posed a serious burden in Qinghai province, it is necessary to clarify the epidemiological characteristics and spatial-temporal distribution of TB for future prevention and control measures. We used descriptive epidemiological methods and spatial statistical analysis including spatial correlation and spatial-temporal analysis in this study. Furthermore, we applied an exponential smoothing model for TB epidemiological trend forecasting. Of 43 859 TB cases, the sex ratio was 1.27:1 (M:F), and the average annual TB registered incidence was 70.00/100 000 of 2009–2019. More cases were reported in March and April, and the worst TB stricken regions were the prefectures of Golog and Yushu. High TB registered incidences were seen in males, farmers and herdsmen, Tibetans, or elderly people. 7132 cases were intractable, which were recurrent, drug resistant, or co-infected with other infections. Three likely cases clusters with significant high risk were found by spatial-temporal scan on data of 2009–2019. The exponential smoothing winters' additive model was selected as the best-fitting model to forecast monthly TB cases in the future. This research indicated that TB in Qinghai is still a serious threaten to the local residents' health. Multi-departmental collaboration and funds special for TB treatments and control are still needed, and the exponential smoothing model is promising which could be applied for forecasting of TB epidemic trend in this high-altitude province.
Background: Embolization represents a minimally invasive treatment modality for arteriovenous malformations (AVMs), tumors, aneurysms, and vessel sacrifice, but can be limited by currently available embolization agents. Discovery of new and improved agents could lead to better treatment outcomes. The goal of this project was to develop and test a novel embolization agent using hydrogels, a class of materials which may be bioengineered to suit a variety of indications. Methods: We devised a method of liquid hydrogel embolization with photo-modulated crosslinking for intravascular solidification, using a custom microcatheter set-up. We tested this in swine blood vessels (n=3), the swine renal arterial trees as a vascular tumor model (n=5), and the swine arterial-arterial networks of the rete mirabile as an AVM model (n=3). Hydrogel embolization was assessed for treatment efficacy and safety. Follow-up angiography was performed at 2-4 week intervals. Results: Hydrogel embolization was technically successful in all animals, with full occlusion of the vascular target immediately following embolization and at follow-up. There were no instances of clinical or angiographic complications. Conclusions: We demonstrated a novel method of dynamic photomodulation and delivery of bioengineered hydrogels to address current limitations of endovascular embolization therapies. This promising technology will be investigated further with longer-term comparative animal trials.
Background: The mechanism of aneurysmal healing after flow-diversion treatment of cerebral aneurysms remains unknown. The purpose of this research to is to utilize a novel technology called endovascular optical coherence tomography (OCT) to characterise and improve our understanding of aneurysmal healing after flow-diversion using a rabbit aneurysm model. Methods: Saccular aneurysms were created in 10 New Zealand white rabbits. The aneurysms were treated with a flow-diverting stent 28 days after creation. OCT and histopathologic examinations included: luminal thrombosis, endothelial loss, inflammation, fibrin, smooth muscle cell loss, disruption of the internal and external elastic lamina, and tunica adventitia changes Results: OCT revealed endothelialization across the stent, appearing to originate from the parent vessel, along with small amounts of thrombus on the stent-struts. Minimal thrombus was visualized within the aneurysm sac. Histologic examination revealed that OCT can accurately define endothelialization across the sent, and define patent segments across the neck. Conclusions: Aneurysmal healing appears to originate at the parent vessel/stent interface, and use the stent as a scaffold to grow across the neck of the aneurysm. Minimal thrombus was visualized within the aneurysm sac, with ongoing flow observed in the setting of incomplete neck endothelialization. This technology has great potential for assessing aneurysmal healing in real-time.
In this paper, a pulsed spark discharge plasma actuator array is deployed to control laminar–turbulent transition in a Mach 3.0 flat-plate boundary layer, and the subtle flow structures are visualized by nanoparticle planar laser scattering (NPLS) technique. Results show that the onset location of turbulence can be brought upstream by plasma actuation, corresponding to forced boundary-layer transition. Hairpin vortex packets evolved from the thermal bulbs play a vital role in the breakdown of laminar flow. With the help of a machine learning tool, all the relevant structures induced by plasma actuation are extracted from NPLS images, and a conceptual model of the hairpin vortex generation is proposed, including three stages: production and lift-up of the high-vorticity region, formation of the $\varLambda$ vortex and evolution of the hairpin vortex.
This study investigated the audiometric and sound localisation results in patients with conductive hearing loss after bilateral Bonebridge implantation.
Method
Eight patients with congenital microtia and atresia supplied with bilateral Bonebridge devices were enrolled in this study. Hearing tests and sound localisation were tested under unaided, unilateral and bilateral aided conditions.
Results
Mean functional gain was higher with a bilateral fitting than with a unilateral fitting, especially at 1.0–4.0 kHz (p < 0.05, both). The improvement in speech reception threshold in noise with a bilateral fitting was a 2.3 dB higher signal-to-noise ratio compared with unilateral fitting (p < 0.05). Bilateral fitting had better sound localisation than unilateral fitting (p <0.001). Four participants who attended follow up showed improved sound localisation ability after one year.
Conclusion
Patients demonstrated better hearing threshold, speech reception thresholds in noise and directional hearing with bilateral Bonebridge devices than with a unilateral Bonebridge device. Sound localisation ability with bilateral Bonebridge devices can be improved through long-term training.
Though schizophrenia (SZ) and obsessive-compulsive disorder (OCD) are conceptualized as distinct clinical entities, they do have notable symptom overlap and a tight association. Graph-theoretical analysis of the brain connectome provides more indicators to describe the functional organization of the brain, which may help us understand the shared and disorder-specific neural basis of the two disorders.
Objectives
To explore the static and dynamic topological organization of OCD and SZ as well as the relationship between topological metrics and clinical variables.
Methods
Resting state functional magnetic resonance imaging data of 31 OCD patients, 49 SZ patients, and 45 healthy controls (HC) were involved in this study (Table 1). Using independent component analysis to obtain independent components (ICs) (Figure 1), which were defined as nodes for static and dynamic topological analysis.
Results
Static analysis showed the global efficiency of SZ was higher than HC. For nodal degree centrality, OCD exhibited decreased degree centrality in IC59 (located in visiual network) (P = 0.03) and increased degree centrality in IC38 (located in salience network) (P = 0.002) compared with HC. Dynamic analysis showed OCD exhibited decreased dynamics of degree centrality in IC38 (P = 0.003) compared with HC, which showed a negative correlation with clinical scores in OCD. While SZ showed decreased dynamics of degree centrality in IC76 (located in sensory motor network) compared with OCD (P=0.009), which showed a positive correlation with clinical scores in SZ (Figure 2).
Conclusions
These changes are suggestive of disorder-specific alternation of static and dynamic brain topological organization in OCD and SZ.
Obsessive-compulsive disorder (OCD) and schizophrenia (SZ) are both severe psychiatric disorders. Though these two disorders have distinct typical symptoms, there are partial polygenic overlap and comorbidity between the two disorders. However, few studies have explored the shared and disorder-specific brain function underlying the neural pathophysiology of the two disorders, especially in the aspect of dynamics.
Objectives
To explore the abnormal characteristics of the dynamic functional connectivity (dFC) in OCD and SZ as well as the association between dFC metrics and symptom severity.
Methods
The resting state functional magnetic resonance imaging data of 31 patients with OCD, 49 patients with SZ, and 45 healthy controls were analyzed using independent component analysis to obtain independent components (ICs) and assigned them into eight brain networks (Figure 1), then used the sliding-window approach to generate dFC matrices. Using k-means clustering, we obtained three reoccurring dFC states (Figure 2), and state transition metrics were obtained
Results
In a sparsely connected state (state 1), SZ showed both increased fractional time and mean dwell time than controls (P=0.047 and P=0.033) and OCD (P=0.001 and P=0.003). In a state characterized by negative FC between networks (state 2), OCD showed both increased fractional time and mean dwell time than controls (P=0.032 and P=0.013) and SZ (P=0.005 and P=0.003). Moreover, the fractional time of state 2 was positively correlated with anxiety scores in OCD (r=0.535, P=0.021, FDR corrected) (Figure 3).
Conclusions
OCD and SZ patients showed distinct alternations of brain functional dynamics.
Loot boxes provide randomized rewards in video games; their purchase is linked to disordered gambling and they are present in approximately half of UK video games. The relative novelty of loot boxes means that regulators and policymakers in various jurisdictions are still deciding how to regulate them. The People's Republic of China (PRC) is the first, and presently only, jurisdiction to legally require companies to disclose the probabilities of obtaining randomized loot box rewards – an approach that is also favored by the industry as self-regulation. This study is the first to assess paid loot box prevalence in the PRC and companies’ discretionary interpretations of probability disclosure regulations. Loot boxes were found in 91 of the 100 highest-grossing PRC iPhone games. Of games deemed suitable for children aged 12+, 90.5% contained loot boxes. Probability disclosures could not be found for 4.4% of games containing loot boxes. Disclosures were implemented through various methods both in-game and on the games’ official websites; however, consistent with the concept of ‘sludge,’ only 5.5% used the most prominent format of automatically displaying the probabilities on the in-game loot box purchase page. Loot box probability disclosures should be uniform and visually prominent to best help inform consumers.