We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Business process management (BPM) has been the main driver behind company optimization and operational efficiency. However, the digitization era we live in necessitates that organizations be agile and adaptable. Delivering unprecedented rates of automation-fueled agility is necessary to be a part of this digital revolution. On the other hand, BPM automation cannot be done only by concentrating on procedure space and traditional planning methodologies. With the introduction of BPM, where the deployment of BPM with cloud computing has undergone enormous development lately, cloud computing has been considered a particularly active topic of study. Cloud computing points to the provision of dependable computing environments based on improved infrastructure availability and service quality without imposing a significant cost load. This research aims to discover the relationship between technical factors, financial factors, environmental factors, security of the cloud-based information systems, and the agile development of industrial BPM (IBPM). The present study aims to fill this gap and show how partial least squares structural equation modeling (SEM) can be employed in this field. Importance–performance map analysis (IPMA) evaluated the importance and performance of factors in the SEM. IPMA enables the identification of factors with relatively low performance but relatively high importance in shaping dependent variables. The empirical findings showed that four key factors (technical, financial, environmental, and security) positively influence the agile development of IBPM.
Due to the lack of research between the inner layers in the structure of colonic mucous and the metabolism of fatty acid in the constipation model, we aim to determine the changes in the mucous phenotype of the colonic glycocalyx and the microbial community structure following treatment with Rhubarb extract in our research. The constipation and treatment models are generated using adult male C57BL/6N mice. We perform light microscopy and transmission electron microscopy (TEM) to detect a Muc2-rich inner mucus layer attached to mice colon under different conditions. In addition, 16S rDNA sequencing is performed to examine the intestinal flora. According to TEM images, we demonstrate that Rhubarb can promote mucin secretion and find direct evidence of dendritic structure-linked mucus structures with its assembly into a lamellar network in a pore size distribution in the isolated colon section. Moreover, the diversity of intestinal flora has noticeable changes in constipated mice. The present study characterizes a dendritic structure and persistent cross-links have significant changes accompanied by the alteration of intestinal flora in feces in models of constipation and pretreatment with Rhubarb extract.
In this paper, effects of discharge parameters and modulation frequency on the signal of laser-induced fluorescence measurements of ion velocity distribution functions are investigated in the LIF Test Source. A maximum modulation frequency is found for each given set of parameters, beyond which the signal gradually declines. Meanwhile, this maximum modulation frequency occurred consistently at ~1/10 of the theoretical frequency limit and photon counts received by a photomultiplier tube, which indicates that as modulation frequency and the associated per-pulse-excitation-event count decrease, the transition from the macroscopic statistical signal to the microscopic probabilistic signal is a gradual process.
In the past 10–15 years, the government of China has made various efforts in tackling excessive antibiotics use. Yet, little is known about their effects at rural primary care settings. This study aimed to determine the impact of government policies and the COVID-19 pandemic on antibiotic prescribing practices at such settings utilizing data from separate studies carried out pre- and during the pandemic, in 2016 and 2021 in Anhui province, China, using identical sampling and survey approaches. Data on antibiotics prescribed, diagnosis, socio-demographic, etc., were obtained through non-participative observation and a structured exit survey. Data analysis comprised mainly descriptive comparisons of 1153 and 762 patients with respiratory infections recruited in 2016 and 2021, respectively. The overall antibiotics prescription rate decreased from 89.6% in 2016 to 69.1% in 2021, and the proportion of prescriptions for two or more classes of antibiotics was estimated as 35.9% in 2016 and 11.0% in 2021. There was a statistically significant decrease in the number of days from symptom onset to clinic visits between the year groups. In conclusion, measures to constrain excessive prescription of antibiotics have led to some improvements at the rural primary care level, and the COVID-19 pandemic has had varying effects on antibiotic use.
Although many previous studies reported structural plasticity of the hippocampus and amygdala induced by electroconvulsive therapy (ECT) in major depressive disorder (MDD), yet the exact roles of both areas for antidepressant effects are still controversial.
Methods
In the current study, segmentation of amygdala and hippocampal sub-regions was used to investigate the longitudinal changes of volume, the relationship between volume and antidepressant effects, and prediction performances for ECT in MDD patients before and after ECT using two independent datasets.
Results
As a result, MDD patients showed selectively and consistently increased volume in the left lateral nucleus, right accessory basal nucleus, bilateral basal nucleus, bilateral corticoamygdaloid transition (CAT), bilateral paralaminar nucleus of the amygdala, and bilateral hippocampus-amygdala transition area (HATA) after ECT in both datasets, whereas marginally significant increase of volume in bilateral granule cell molecular layer of the head of dentate gyrus, the bilateral head of cornu ammonis (CA) 4, and left head of CA 3. Correlation analyses revealed that increased volume of left HATA was significantly associated with antidepressant effects after ECT. Moreover, volumes of HATA in the MDD patients before ECT could be served as potential biomarkers to predict ECT remission with the highest accuracy of 86.95% and 82.92% in two datasets (The predictive models were trained on Dataset 2 and the sensitivity, specificity and accuracy of Dataset 2 were obtained from leave-one-out-cross-validation. Thus, they were not independent and very likely to be inflated).
Conclusions
These results not only suggested that ECT could selectively induce structural plasticity of the amygdala and hippocampal sub-regions associated with antidepressant effects of ECT in MDD patients, but also provided potential biomarkers (especially HATA) for effectively and timely interventions for ECT in clinical applications.
To determine if limb lengths, as markers of early life environment, are associated with the risk of diabetes in China.
Design:
We performed a cohort analysis using data from the China Health and Retirement Longitudinal Study (CHARLS), and multivariable-adjusted Cox proportional hazard regression models were used to examine the associations between baseline limb lengths and subsequent risk of diabetes.
Setting:
The CHARLS, 2011–2018.
Participants:
The study confined the eligible subject to 10 711 adults aged over 45 years from the CHARLS.
Results:
During a mean follow-up period of 6·13 years, 1358 cases of incident diabetes were detected. When controlling for potential covariates, upper arm length was inversely related to diabetes (hazard ratio (HR) 0·95, 95 % CI (0·91, 0·99), P = 0·028), and for every 1-cm difference in knee height, the risk of diabetes decreased by about 4 % (HR 0·96, 95 % CI (0·93, 0·99), P = 0·023). The association between upper arm length and diabetes was only significant among females while the association between knee height and diabetes was only significant among males. In analyses stratified by BMI, significant associations between upper arm length/knee height and diabetes only existed among those who were underweight (HR 0·91, 95 % CI (0·83, 1·00), P = 0·049, HR 0·92, 95 % CI (0·86, 0·99), P = 0·031).
Conclusions:
Inverse associations were observed between upper arm length, knee height and the risk for diabetes development in a large Asian population, suggesting early life environment, especially infant nutritional status, may play an important role in the determination of future diabetes risk.
The 4.2 ka event is widely presumed to be a globally widespread aridity event and has been linked to several episodes of societal changes across the globe. Whether this climate event impacted the cultural development in south-central China remains uncertain due to a lack of regional paleorainfall records. We present here stalagmite stable carbon isotope and trace element–based reconstruction of hydroclimatic conditions from south-central China. Our data reveal a sub–millennial scale (~5.6 to 4.3 ka) drying trend in the region followed by a gradual transition to wetter conditions during the 4.2 ka event (4.3–3.9 ka). Together with the existing archaeological evidence, our data suggest that the drier climate before 4.3 ka may have promoted the Shijiahe culture, while the pluvial conditions during the 4.2 ka event may have adversely affected its settlements in low-lying areas. While military conflicts with the Wangwan III culture may have accelerated the collapse of Shijiahe culture, we suggest that the joint effects of climate and the region's topography also played important causal roles in its demise.
Lower-crust-derived adakitic rocks in the Gangdese belt provide important constraints on the timing of Tibetan crustal thickening and on the relative contributions of magmatic and tectonic processes. Here we present geochronological and geochemical data for the Wangdui porphyritic monzogranites in the western Gangdese belt. Zircon U–Pb dating yields emplacement ages of 46–44 Ma. All samples have high Sr (321–599 ppm), low Yb (0.76–1.33 ppm) and Y (10.6–18.3 ppm) contents, with high La/Yb (51.1–72.3) and Sr/Y (21.0–51.4) ratios, indicating adakitic affinities. The low MgO (0.97–1.76 wt %), Cr (7.49–53.6 ppm) and Ni (4.75–29.1 ppm) contents, as well as high 87Sr/86Sr(i) (0.7143–0.7145), low ϵNd(t) (−10.4 to −9.8) and zircon ϵHf(t) (−17.7 to 0.4) values, suggest that the Wangdui pluton most likely originated from partial melting of the thickened ancient lower crust. In combination with previously published data, despite the east–west-trending heterogeneity of crustal composition in the Gangdese belt, the La/Yb ratios of magmatic rocks reveal that both western and eastern segments experienced remarkable crustal thickening in the Eocene. However, in contrast to the thickened juvenile lower crust in the eastern segment formed by the underplating of mantle-derived magmas, tectonic shortening plays a more crucial role in thickening of the ancient basement in western Gangdese. In fact, such Eocene-thickened ancient lower-crust-derived adakitic rocks are widely distributed in the central Himalayan–Tibetan orogen. This, together with the extensive development of fold–thrust belts, suggests that tectonic shortening might be the main mechanism accounting for the crustal thickening associated with the India–Asia collision.
The deformation and breakup of droplets in airflows is important in spray and atomisation processes, but the shear effect in non-uniform airflow is rarely reported. In this study, the deformation and breakup of droplets in a shear flow of air is investigated experimentally using high-speed imaging, digital image processing and particle image velocimetry. The results show that in airflow with a strong shear effect, the droplet breakup exhibits unique features due to the uplift and stretching produced by the interaction between the deformed droplet and the shear layer. The breakup process can be divided into three stages according to the droplet morphology and the breakup mechanism, namely the sheet breakup, the swing breakup and the rim breakup stages. Theoretical analysis reveals that the swing breakup is governed by the transverse Rayleigh–Taylor instability. A regime map of the droplet breakup is produced, and the transitions between different regimes are obtained theoretically. The stretching liquid film during the droplet deformation and the fragment size distribution after droplet breakup are analysed quantitatively, and the results show that they are determined by the competition of breakup at different stages affected by the shear. Finally, the effect of the droplet viscosity is investigated, and the viscosity inhibits the droplet breakup in a strong shear airflow.
Brachiopods suffered high levels of extinction during the Permian–Triassic crisis, and their diversity failed to return to Permian levels. In the aftermath of the Permian-Triassic mass extinction, brachiopods were extremely rare worldwide, especially in the southern hemisphere. Here, we report a new Early Triassic brachiopod fauna from the Selong section in southern Tibet, China. A new genus and three new species have been identified: Selongthyris plana Wang and Chen n. gen. n. sp., Piarorhynchella selongensis Wang and Chen n. sp., and Schwagerispira cheni Wang and Chen n. sp., which are typical. The ontogenies and internal structures of these three new species are described in detail. This brachiopod fauna corresponds to the Neospathodus pakistanensis and Neospathodus waageni conodont biozones and Kashmirites and Anasibirites ammonoid biozones, indicating a late Dienerian to late Smithian age. The post-extinction recovery of brachiopods in the Himalayas may have begun by the early Smithian of the Early Triassic. In addition, these species did not persist into the Spathian substage, suggesting that the newly evolved brachiopods in the southern Tethys were severely affected by the late Smithian extinction event.
The decompositions of the skin-friction and heat-transfer coefficients based on the twofold repeated integration in hypersonic transitional and turbulent boundary layers are analysed to give some major reasons of the overshoot phenomena of the wall skin friction and heat transfer. It is shown that the overshoot of the skin-friction coefficient is mainly caused by the drastic change of the mean velocity profiles, especially the strong negative streamwise gradient of the mean streamwise velocity far from the wall; and the overshoot of the heat-transfer coefficient is primarily due to the viscous dissipation, especially the strong positive vertical gradient of the mean streamwise velocity near the wall. These observations are different from the previous observations that the Reynolds shear stress and Reynolds heat flux are the reasons, respectively. Further investigations show that the above observations are independent of the set-up of the wall blowing and suction parameters, which indicates the universality of the major reasons of the overshoot phenomena in our numerical simulations. In the hypersonic turbulent boundary layers, it is observed that the strongly cooled wall temperature and the high Mach number can slightly enhance the contribution of the Reynolds shear stress, and weaken the contribution of the mean convection, mainly due to the strong compressibility effect. Moreover, the magnitudes of the relative contributions of the mean convection, pressure dilatation, viscous dissipation and the Reynolds heat flux increase as the wall temperature increases.
with positive parameters $D_u,D_w,D_z,\xi _u,\xi _w,\delta _z,\rho$, $\alpha _u,\alpha _w,\mu _u,\beta$. When posed under no-flux boundary conditions in a smoothly bounded domain $\Omega \subset {\mathbb {R}}^{2}$, and along with initial conditions involving suitably regular data, the global existence of classical solution to this system was asserted in Tao and Winkler (2020, J. Differ. Equ. 268, 4973–4997). Based on the suitable quasi-Lyapunov functional, it is shown that when the virus replication rate $\beta <1$, the global classical solution $(u,v,w,z)$ is uniformly bounded and exponentially stabilizes to the constant equilibrium $(1, 0, 0, 0)$ in the topology $(L^{\infty }(\Omega ))^{4}$ as $t\rightarrow \infty$.
Energy homeostasis is essential for organisms to maintain fluctuation in energy accumulation, mobilization. Lipids as the main energy reserve in insects, their metabolism is under the control of many physiological program. This study aimed to determine whether the adipokinetic hormone receptor (AKHR) was involved in the lipid mobilization in the Spodoptera litura. A full-length cDNA encoding AKHR was isolated from S. litura. The SlAKHR protein has a conserved seven-transmembrane domain which is the character of a putative G protein receptor. Expression profile investigation revealed that SlAKHR mRNA was highly expressed in immatural stage and abundant in fat body in newly emerged female adults. Knockdown of SlAKHR expression was achieved through RNAi by injecting double-stranded RNA (dsRNA) into the 6th instar larvae. The content of triacylgycerol (TAG) in the fat body increased significantly after the SlAKHR gene was knockdown. And decrease of TAG releasing to hemolymph with increase of free fatty acid (FFA) in hemolymph were observed when the SlAKHR gene was knowned-down. In addition, lipid droplets increased in fat body was also found. These results suggested that SlAKHR is critical for insects to regulate lipids metabolism.
The Lancang-Mekong River Basin (LMRB) is Asia's most important transboundary river. The precipitation-dependent agriculture and the world's largest inland fishery in the basin feed more than 70 million people. Floods are the main natural disasters which pose a serious threat to the local agriculture and human life. In the future, climate change will affect the streamflow and lead to changes in flood events. Based on the GMDF and GCM data, the SPI and the VIC model were used to assess the impact of climate change on streamflow and flood events during the historical (1985–2016) and future periods (2020–2050) in the LMRB. The results show that the LMRB will become more humid in the future and annual precipitation will change from about -2 to 6 per cent under RCP4.5 and RCP8.5. In the future, this basin should experience a higher flood risk, with more flood events and a relative increase in the flood peak and frequency reaching up to +15 and +58 per cent, respectively. This study contributes to improve our understanding of the role of climate change on streamflow and flood events and provides a scientific reference for the development of local water resources management in the LMRB.
Although immune checkpoint inhibitors (ICIs) have produced remarkable responses in non-small cell lung cancer (NSCLC) patients, receivers still have a relatively low response rate. Initial response assessment by conventional imaging and evaluation criteria is often unable to identify whether patients can achieve durable clinical benefit from ICIs. Overall, there are sparse effective biomarkers identified to screen NSCLC patients responding to this therapy. A lot of studies have reported that patients with specific gene mutations may benefit from or resist to immunotherapy. However, the single gene mutation may be not effective enough to predict the benefit from immunotherapy for patients. With the advancement in sequencing technology, further studies indicate that many mutations often co-occur and suggest a drastic transformation of tumour microenvironment phenotype. Moreover, co-mutation events have been reported to synergise to activate or suppress signalling pathways of anti-tumour immune response, which also indicates a potential target for combining intervention. Thus, the different mutation profile (especially co-mutation) of patients may be an important concern for predicting or promoting the efficacy of ICIs. However, there is a lack of comprehensive knowledge of this field until now. Therefore, in this study, we reviewed and elaborated the value of cancer mutation profile in predicting the efficacy of immunotherapy and analysed the underlying mechanisms, to provide an alternative way for screening dominant groups, and thereby, optimising individualised therapy for NSCLC patients.
Family feasting during the Spring Festival is a Chinese tradition. However, close contact during this period is likely to promote the spread of coronavirus disease 2019 (COVID-19). This study developed a dynamic infectious disease model in which the feast gatherings of families were considered the sole mode of transmission. The model simulates COVID-19 transmission via family feast gatherings through a social contact network. First, a kinship-based, virtual social contact network was constructed, with nodes representing families and connections representing kinships. Families in kinship with each other comprised of the largest globally coupled network, also known as a clique, in which a feast gathering was generated by randomly selecting two or more families willing to gather. The social contact network in the model comprised of 215 cliques formed among 608 families with 1517 family members. The modelling results indicated that when there is only one patient on day 0, the number of new infections will reach a peak on day 29, and almost all families and their members in the social contact network will be infected by day 60. This study demonstrated that COVID-19 can spread rapidly through continuous feast gatherings through social contact networks and that the disease will run rampant throughout the network.
Prospective cohort studies linking organ meat consumption and nonalcoholic fatty liver disease (NAFLD) are limited, especially in Asian populations. This study aimed to prospectively investigate the association between organ meat consumption and risk of NAFLD in a general Chinese adult population. This prospective cohort study included a total of 15,568 adults who were free of liver disease, cardiovascular disease, and cancer at baseline. Dietary information was collected at baseline using a validated food frequency questionnaire. NAFLD was diagnosed by abdominal ultrasound after excluding other causes related to chronic liver disease. Cox proportional regression models were used to assess the association between organ meat consumption and risk of NAFLD. During a median of 4.2 years of follow-up, we identified 3,604 incident NAFLD cases. After adjusting for demographic characteristics, lifestyle factors, vegetable, fruit, soft drink, seafood, and red meat consumption, the multivariable hazard ratios (95% confidence intervals) for incident NAFLD across consumption of organ meat were 1.00 (reference) for almost never, 1.04 (0.94, 1.15) for tertile 1, 1.08 (0.99, 1.19) for tertile 2, and 1.11 (1.01, 1.22) for tertile 3, respectively (P for trend <0.05). Such association did not differ substantially in the sensitivity analysis. Our study indicates that organ meat consumption was related to a modestly higher risk of NAFLD among Chinese adults. Further investigations are needed to confirm this finding.
Temperature strongly impacts the rates of physiological and biochemical processes, which in turn can determine the survival and population size of insects. At low temperatures performance is limited, however, cold tolerance and performance at low temperature can be improved after short- or long-term acclimation in many insect species. To understand mechanisms underlying acclimation, we sequenced and compared the transcriptome of the blowfly Chrysomya megacephala under rapid cold hardening (RCH) and long-term cold acclimation (LCA) conditions. The RCH response was dominated by genes related to immune response, spliceosome, and protein processing in endoplasmic reticulum with up-regulation during recovery from RCH. In contrast, LCA was associated with genes related to carbohydrate metabolism and cytoskeleton branching and stabilizing. Meanwhile, mRNA levels of genes related to glycerophospholipid metabolism, and some heat shock proteins (Hsps) were collectively up-regulated by both RCH and LCA. There were more genes and pathway adjustments associated with LCA than RCH. Overall, the transcriptome data provide basic information of molecular mechanisms underpinning the RCH and LCA response. The partly independent molecular responses to RCH and LCA suggest that several avenues for manipulating cold performance exist and RCH might be more effective as it only triggers fewer genes and affects the general metabolisms less. These observations provide some appropriate methods to improve cold tolerance of C. megacephala, and hold promise for developing an extended use of mass-reared C. megacephala with better cold performance as a pollinator of crops at low temperatures.