We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This study aimed at estimating the transmissibility of hepatitis C. The data for hepatitis C cases were collected in six districts in Xiamen City, China from 2004 to 2018. A population-mixed susceptible-infectious-chronic-recovered (SICR) model was used to fit the data and the parameters of the model were calculated. The basic reproduction number (R0) and the number of newly transmitted cases by a primary case per month (MNI) were adopted to quantitatively assess the transmissibility of hepatitis C virus (HCV). Eleven curve estimation models were employed to predict the trends of R0 and MNI in the city. The SICR model fits the reported HCV data well (P < 0.01). The median R0 of each district in Xiamen is 0.4059. R0 follows the cubic model curve, the compound curve and the power function curve. The median MNI of each district in Xiamen is 0.0020. MNI follows the cubic model curve, the compound curve and the power function curve. The transmissibility of HCV follows a decreasing trend, which reveals that under the current policy for prevention and control, there would be a high feasibility to eliminate the transmission of HCV in the city.
To evaluate the effects of dietary Ca intake and Ca supplementation during pregnancy on low birth weight (LBW) and small for gestational age (SGA) infants.
Design:
A birth cohort study was conducted in 2010–2012 at the Gansu Provincial Maternity and Child Care Hospital in Lanzhou, China.
Setting:
A birth cohort study.
Participants:
Totally, 9595 pregnant women who came to the hospital for delivery at 20 weeks of gestation or more, and who were 18 years of age or older.
Results:
Compared with non-users, Ca supplement users had a reduced risk of LBW infants (OR = 0·77, 95 % CI: 0·63, 0·95) and a reduced risk of nulliparous women giving birth to LBW infants (OR = 0·75, 95 % CI: 0·58, 0·98) (P < 0·05). More specifically, both the use of Ca supplement before conception and during pregnancy (OR = 0·44, 95 % CI: 0·19, 0·99) and during pregnancy only (OR = 0·80, 95 % CI: 0·65, 0·99) had the main effect of reducing risk of nulliparous women giving birth to LBW infants (P < 0·05). There was no association between Ca supplementation and SGA (OR = 0·87, 95 % CI: 0·75, 1·01) (P > 0·05). However, higher dietary Ca intake during pregnancy decreases the risk of both LBW (quartile 2: OR = 0·72, 95 % CI: 0·55, 0·94; quartile 3: OR = 0·68, 95 % CI: 0·50, 0·62) and SGA infants (quartile 2: OR = 0·77, 95 % CI: 0·63, 0·95; quartile 3: OR = 0·71, 95 % CI: 0·57, 0·88, quartile 4: OR = 0·71, 95 % CI: 0·57, 0·88) (P < 0·05).
Conclusions:
Ca supplementation and adequate dietary intake of Ca during pregnancy are associated with a decreased risk of LBW infants born to nulliparous women.
This study aimed to identify clinical features for prognosing mortality risk using machine-learning methods in patients with coronavirus disease 2019 (COVID-19). A retrospective study of the inpatients with COVID-19 admitted from 15 January to 15 March 2020 in Wuhan is reported. The data of symptoms, comorbidity, demographic, vital sign, CT scans results and laboratory test results on admission were collected. Machine-learning methods (Random Forest and XGboost) were used to rank clinical features for mortality risk. Multivariate logistic regression models were applied to identify clinical features with statistical significance. The predictors of mortality were lactate dehydrogenase (LDH), C-reactive protein (CRP) and age based on 500 bootstrapped samples. A multivariate logistic regression model was formed to predict mortality 292 in-sample patients with area under the receiver operating characteristics (AUROC) of 0.9521, which was better than CURB-65 (AUROC of 0.8501) and the machine-learning-based model (AUROC of 0.4530). An out-sample data set of 13 patients was further tested to show our model (AUROC of 0.6061) was also better than CURB-65 (AUROC of 0.4608) and the machine-learning-based model (AUROC of 0.2292). LDH, CRP and age can be used to identify severe patients with COVID-19 on hospital admission.
Age effects may be important for improving models for the prediction of conversion to psychosis for individuals in the clinical high risk (CHR) state. This study aimed to explore whether adolescent CHR individuals (ages 9–17 years) differ significantly from adult CHR individuals (ages 18–45 years) in terms of conversion rates and predictors.
Method
Consecutive CHR individuals (N = 517) were assessed for demographic and clinical characteristics and followed up for 3 years. Individuals with CHR were classified as adolescent (n = 244) or adult (n = 273) groups. Age-specific prediction models of psychosis were generated separately using Cox regression.
Results
Similar conversion rates were found between age groups; 52 out of 216 (24.1%) adolescent CHR individuals and 55 out of 219 (25.1%) CHR adults converted to psychosis. The conversion outcome was best predicted by negative symptoms compared to other clinical variables in CHR adolescents (χ2 = 7.410, p = 0.006). In contrast, positive symptoms better predicted conversion in CHR adults (χ2 = 6.585, p = 0.01).
Conclusions
Adolescent and adult CHR individuals may require a different approach to early identification and prediction. These results can inform the development of more precise prediction models based on age-specific approaches.
We aimed to evaluate the relationship of plasma Mg with the risk of new-onset hyperuricaemia and examine any possible effect modifiers in hypertensive patients. This is a post hoc analysis of the Uric acid (UA) Sub-study of the China Stroke Primary Prevention Trial (CSPPT). A total of 1685 participants were included in the present study. The main outcome was new-onset hyperuricaemia defined as a UA concentration ≥417 μmol/l in men or ≥357 μmol/l in women. The secondary outcome was a change in UA concentration defined as UA at the exit visit minus that at baseline. During a median follow-up duration of 4·3 years, new-onset hyperuricaemia occurred in 290 (17·2 %) participants. There was a significantly inverse relation of plasma Mg with the risk of new-onset hyperuricaemia (per sd increment; OR 0·85; 95 % CI 0·74, 0·99) and change in UA levels (per sd increment; β −3·96 μmol/l; 95 % CI −7·14, −0·79). Consistently, when plasma Mg was analysed as tertiles, a significantly lower risk of new-onset hyperuricaemia (OR 0·67; 95 % CI 0·48, 0·95) and less increase in UA levels (β −8·35 μmol/l; 95 % CI −16·12, −0·58) were found among participants in tertile 3 (≥885·5 μmol/l) compared with those in tertile 1 (<818·9 μmol/l). Similar trends were found in males and females. Higher plasma Mg levels were associated with a decreased risk of new-onset hyperuricaemia in hypertensive adults.
Only 30% or fewer of individuals at clinical high risk (CHR) convert to full psychosis within 2 years. Efforts are thus underway to refine risk identification strategies to increase their predictive power. Our objective was to develop and validate the predictive accuracy and individualized risk components of a mobile app-based psychosis risk calculator (RC) in a CHR sample from the SHARP (ShangHai At Risk for Psychosis) program.
Method
In total, 400 CHR individuals were identified by the Chinese version of the Structured Interview for Prodromal Syndromes. In the first phase of 300 CHR individuals, 196 subjects (65.3%) who completed neurocognitive assessments and had at least a 2-year follow-up assessment were included in the construction of an RC for psychosis. In the second phase of the SHARP sample of 100 subjects, 93 with data integrity were included to validate the performance of the SHARP-RC.
Results
The SHARP-RC showed good discrimination of subsequent transition to psychosis with an AUC of 0.78 (p < 0.001). The individualized risk generated by the SHARP-RC provided a solid estimation of conversion in the independent validation sample, with an AUC of 0.80 (p = 0.003). A risk estimate of 20% or higher had excellent sensitivity (84%) and moderate specificity (63%) for the prediction of psychosis. The relative contribution of individual risk components can be simultaneously generated. The mobile app-based SHARP-RC was developed as a convenient tool for individualized psychosis risk appraisal.
Conclusions
The SHARP-RC provides a practical tool not only for assessing the probability that an individual at CHR will develop full psychosis, but also personal risk components that might be targeted in early intervention.
Identifying risk factors and mortality of individuals with Alzheimer’s disease (AD) could have important implications for the clinical management of AD.
Objective:
This pilot study aimed to examine the overall mortality of AD patients over a 10-year surveillance period in Shanghai, China. This study is an extension of our previous investigation on mortality of neurodegenerative diseases.
Methods:
One hundred and thirty-two AD patients recruited from the memory clinics of two hospitals in Shanghai in 2007 were followed up until December 31, 2017 or death, representing a follow-up period of up to 10 years. Overall standardized mortality ratios (SMRs) were calculated, and predictors for survival at recruitment were estimated.
Results:
Sixty-seven patients had died by December 31, 2017, and the SMR at 10 years of follow-up was 1.225 (95% confidence interval 0.944–1.563). Employing Cox’s proportional hazard modeling, lower Mini-Mental State Examination score, and comorbid diabetes predicted poor survival in this cohort.
Conclusion:
This pilot study suggests a similar survival trend of patients with AD compared to the general population in Shanghai urban region. Poor cognitive status and comorbid diabetes had a negative impact on the survival of AD patients.
To investigate the hypothesis that folic acid supplementation and dietary folate intake before conception and during pregnancy reduce the risk of small for gestational age (SGA) and to examine the joint effect of folic acid supplementation and dietary folate intake on the risk of SGA.
Design:
Participants were interviewed by trained study interviewers using a standardized and structured questionnaire. Information on birth outcomes and maternal complications was abstracted from medical records and dietary information was collected via a semi-quantitative FFQ before conception and during pregnancy.
Setting:
A birth cohort data analysis using the 2010–2012 Gansu Provincial Maternity and Child Care Hospital.
Participants:
Women (n 8758) and their children enrolled in the study.
Results:
Folic acid supplementation was associated with a reduced risk of SGA (OR = 0·72, 95 % CI 0·60, 0·86), with the reduced risk seen mainly for SGA at ≥37 weeks of gestational age (OR = 0·70, 95 % CI 0·58, 0·85) and nulliparous SGA (OR = 0·67, 95 % CI 0·54, 0·84). There was no significant association between dietary folate intake and SGA risk.
Conclusions:
Our study suggested that folic acid supplementation was associated with a reduced risk of SGA and the risk varied by preterm status and parity.
Crystal structure and electronic structure of YMnO3 were investigated by X-ray diffraction and transmission electron microscopy related techniques. According to the density of states (DOS), the individual interband transitions to energy loss peaks in the low energy loss spectrum were assigned. The hybridization of O 2p with Mn 3d and Y 4d analyzed by the partial DOS was critical to the ferroelectric nature of YMnO3. From the simulation of the energy loss near-edge structure, the fine structure of O K-edge was in good agreement with the experimental spectrum. The valence state of Mn (+3) in YMnO3 was determined by a comparison between experiment and calculations.
Few of the previous studies of clinical high risk of psychosis (CHR) have explored whether outcomes other than conversion, such as poor functioning or treatment responses, are better predicted when using risk calculators. To answer this question, we compared the predictive accuracy between the outcome of conversion and poor functioning by using the NAPLS-2 risk calculator.
Methods
Three hundred CHR individuals were identified using the Chinese version of the Structured Interview for Prodromal Symptoms. Of these, 228 (76.0%) completed neurocognitive assessments at baseline and 199 (66.3%) had at least a 1-year follow-up assessment. The latter group was used in the NAPLS-2 risk calculator.
Results
We divided the sample into two broad categories based on different outcome definitions, conversion (n = 46) v. non-conversion (n = 153) or recovery (n = 138) v. poor functioning (n = 61). Interestingly, the NAPLS-2 risk calculator showed moderate discrimination of subsequent conversion to psychosis in this sample with an area under the receiver operating characteristic curve (AUC) of 0.631 (p = 0.007). However, for discriminating poor functioning, the AUC of the model increased to 0.754 (p < 0.001).
Conclusions
Our results suggest that the current risk calculator was a better fit for predicting a poor functional outcome and treatment response than it was in the prediction of conversion to psychosis.
Underground Nuclear Astrophysics in China (JUNA) will take the advantage of the ultra-low background in Jinping underground lab. High current accelerator with an ECR source and detectors were commissioned. JUNA plans to study directly a number of nuclear reactions important to hydrostatic stellar evolution at their relevant stellar energies. At the first period, JUNA aims at the direct measurements of 25Mg(p,γ)26 Al, 19F(p,α) 16 O, 13C(α, n) 16O and 12C(α,γ) 16O near the Gamow window. The current progress of JUNA will be given.
Coarsening mechanism of precipitations was investigated in a weld metal of Alloy 617 during long-term aging at 750 °C, and its effect on impact toughness was clarified distinctly. The needle-like M6C phases at the grain boundary nucleated and coarsened at 2000 h and then presented a stable size with aging to 8000 h. Spherical γ′ phase grew rapidly with the rate of 0.0121 nm/h when aged at 1000 h; then, its ripening rate (RR) reduced to 0.0033 nm/h at 8000 h and stabilized around it. The coarsening of M6C and γ′ was, respectively, controlled by interface diffusion and volume diffusion with the coarsening rate constant of 7.865 × 10−20 m2/s and 1.519 × 10−27 m3/s. Interaction of M6C and γ′ could facilitate their coarsening and cause dramatic decrease in toughness at the early stage. At aging to 8000 h and more, the lower RR of needle-like M6C phases and γ′ phases helped to form stable toughness at a later stage.
In this paper, the influence of strain rate on the mechanical behavior of high-strength low-alloy (HC420LA) steel were studied. Quasi-static and dynamic tensile experiments were performed with strain rates ranging from 0.001 to 500 s−1 at room temperature. The digital image correlation technique was used to obtain the full-field strain. The experimental results showed that HC420LA steel exhibited positive strain rate sensitivity. Based on experimental results, the modified Johnson–Cook (J–C) model was used to model the constitutive behavior of HC420LA steel. Predictions of the standard and modified J–C models were compared using standard statistical parameters. The modified J–C model showed better agreement with the experimental data. Then, numerical simulation of the representative tensile test at a strain rate of 100 s−1 was performed using the finite element code LS-DYNA. Good correlation between the experimental and numerical simulation results was achieved.
Heading date (HD) and flowering date (FD) are critical for yield potential and stability, so understanding their genetic foundation is of great significance in wheat breeding. Three related recombinant inbred line populations with a common female parent were developed to identify quantitative trait loci (QTL) for HD and FD in four environments. In total, 25 putative additive QTL and 20 pairwise epistatic effect QTL were detected in four environments. The additive QTL were distributed across 17 wheat chromosomes. Of these, QHd-1A, QHd-1D, QHd-2B, QHd-3B, QHd-4A, QHd-4B and QHd-6D were major and stable QTL for HD. QFd-1A, QFd-2B, QFd-4A and QFd-4B were major and stable QTL for FD. In addition, an epistatic interaction test showed that epistasis played important roles in controlling wheat HD and FD. Genetic relationships between HD/FD and five yield-related traits (YRTs) were characterized and ten QTL clusters (C1–C10) simultaneously controlling YRTs and HD/FD were identified. The present work laid a genetic foundation for improving yield potential in wheat molecular breeding programmes.
We sought to examine the potential modifiers in the association between long-term low-dose folic acid supplementation and the reduction of serum total homocysteine (tHcy) among hypertensive patients, using data from the China Stroke Primary Prevention Trial (CSPPT). This analysis included 16 867 participants who had complete data on tHcy measurements at both the baseline and exit visit. After a median treatment period of 4·5 years, folic acid treatment significantly reduced the tHcy levels by 1·6 μmol/l (95 % CI 1·4, 1·8). More importantly, after adjustment for baseline tHcy and other important covariates, a greater degree of tHcy reduction was observed in certain subgroups: males, the methylenetetrahydrofolate reductase (MTHFR) 677TT genotype, higher baseline tHcy levels (≥12·5 (median) v. <12·5 μmol/l), lower folate levels (<8·0 (median) v. ≥8·0 ng/ml), estimated glomerular filtration rate (eGFR) <60 ml/min per 1·73 m2 (v. 60–<90 and ≥90 ml/min per 1·73 m2), ever smokers and concomitant use of diuretics (P for all interactions <0·05). The degree of tHcy reduction associated with long-term folic acid supplementation can be significantly affected by sex, MTHFR C677T genotypes, baseline folate, tHcy, eGFR levels and smoking status.
Excessive worry is a defining feature of generalized anxiety disorder and is present in a wide range of other psychiatric conditions. Therefore, individualized predictions of worry propensity could be highly relevant in clinical practice, with respect to the assessment of worry symptom severity at the individual level.
Methods
We applied a multivariate machine learning approach to predict dispositional worry based on microstructural integrity of white matter (WM) tracts.
Results
We demonstrated that the machine learning model was able to decode individual dispositional worry scores from microstructural properties in widely distributed WM tracts (mean absolute error = 10.46, p < 0.001; root mean squared error = 12.82, p < 0.001; prediction R2 = 0.17, p < 0.001). WM tracts that contributed to worry prediction included the posterior limb of internal capsule, anterior corona radiate, and cerebral peduncle, as well as the corticolimbic pathways (e.g. uncinate fasciculus, cingulum, and fornix) already known to be critical for emotion processing and regulation.
Conclusions
The current work thus elucidates potential neuromarkers for clinical assessment of worry symptoms across a wide range of psychiatric disorders. In addition, the identification of widely distributed pathways underlying worry propensity serves to better improve the understanding of the neurobiological mechanisms associated with worry.
This study aim to derive and validate a simple and well-performing risk calculator (RC) for predicting psychosis in individual patients at clinical high risk (CHR).
Methods
From the ongoing ShangHai-At-Risk-for-Psychosis (SHARP) program, 417 CHR cases were identified based on the Structured Interview for Prodromal Symptoms (SIPS), of whom 349 had at least 1-year follow-up assessment. Of these 349 cases, 83 converted to psychosis. Logistic regression was used to build a multivariate model to predict conversion. The area under the receiver operating characteristic (ROC) curve (AUC) was used to test the effectiveness of the SIPS-RC. Second, an independent sample of 100 CHR subjects was recruited based on an identical baseline and follow-up procedures to validate the performance of the SIPS-RC.
Results
Four predictors (each based on a subset of SIPS-based items) were used to construct the SIPS-RC: (1) functional decline; (2) positive symptoms (unusual thoughts, suspiciousness); (3) negative symptoms (social anhedonia, expression of emotion, ideational richness); and (4) general symptoms (dysphoric mood). The SIPS-RC showed moderate discrimination of subsequent transition to psychosis with an AUC of 0.744 (p < 0.001). A risk estimate of 25% or higher had around 75% accuracy for predicting psychosis. The personalized risk generated by the SIPS-RC provided a solid estimate of conversion outcomes in the independent validation sample, with an AUC of 0.804 [95% confidence interval (CI) 0.662–0.951].
Conclusion
The SIPS-RC, which is simple and easy to use, can perform in the same manner as the NAPLS-2 RC in the Chinese clinical population. Such a tool may be used by clinicians to counsel appropriately their patients about clinical monitor v. potential treatment options.
Familial monozygotic (MZ) twinning reports are rare around the world, and we report a four-generation pedigree with seven recorded pairs of female MZ twins. Whole-genome sequencing of seven family members was performed to explore the featured genetic factors in MZ twins. For variations specific to MZ twins, five novel variants were observed in the X chromosome. These candidates were used to explain the seemingly X-linked dominant inheritance pattern, and only one variant was exonic, located at the 5′UTR region of ZCCHC12 (chrX: 117958597, G > A). Besides, consistent mitochondrial DNA composition in the maternal linage precluded roles of mitochondria for this trait. In this pedigree, autosomes also contain diverse variations specific to MZ twins. Pathway analysis revealed a significant enrichment of genes carrying novel SNVs in the epithelial adherens junction-signaling pathway (p = .011), contributed by FGFR1, TUBB6, and MYH7B. Meanwhile, TBC1D22A, TRIOBP, and TUBB6, also carrying similar SNVs, were involved in the GTPase family-mediated signal pathway. Furthermore, gene-set enrichment analysis for 533 genes covered by copy number variations specific to MZ twins illustrated that the tight junction-signaling pathway was significantly enriched (p < .001). Therefore, the novel changes in the X chromosome and the provided candidate variants across autosomes may be responsible for MZ twinning, giving clues to increase our understanding about the underlying mechanism.
Moraines preserved around Mount Xuebaoding (5588 m above sea level) on the eastern margin of the Tibetan Plateau, represent past glacial activity in this area. The chronology of these moraines was established using 10Be exposure dating. The dating results revealed multiple glacial events prior to the late glacial (>14.1±2.2 ka), the late glacial (15.6±1.6 to 11.2±3.0 ka), the early-middle Holocene (9.1±0.9 to 6.7±0.7 ka), and the Neoglacial periods (2.5±0.5 to 1.5±0.1 ka). These glacial stages are consistent with the recalculated ages from surrounding areas throughout the Indian and East Asian monsoon-influenced region on the eastern Tibetan Plateau. Comparing with other paleoclimate indexes, we suggest that the late glacial event was mainly driven by low temperature, the early–middle Holocene event by high precipitation, and the late Holocene/Neoglacial event by low temperature.
In north-central China, subsistence practices transitioned from hunting and gathering to millet-based agriculture between the early and middle Holocene. To better understand how ancient environmental changes influenced this shift in subsistence strategies and human activities at regional to local levels, we conducted palynological and lithologic analyses on radiocarbon-dated sediment cores from the Luoyang Basin, western Henan Province. Our palynological results suggest that vegetation shifted from broad-leaved deciduous forest (9230–8850 cal yr BP) to steppe-meadow vegetation (8850–7550 cal yr BP), and then to steppe with sparse trees (7550–6920 cal yr BP). Lithologic analyses also indicate that the stabilization of the Luoyang Basin’s floodplain after ~8370 cal yr BP might have attracted people to move into the basin, promoting the emergence of millet-based agriculture during the Peiligang culture period (8500–7000 cal yr BP). Once agricultural practices emerged, the climatic optimum after ~7550 cal yr BP likely facilitated the expansion of the Yangshao culture (7000–5000 cal yr BP) in north-central China. As agriculture intensified, pollen taxa related to human disturbance, such as Urtica, increased in abundance.