We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The 4.2 ka event is widely presumed to be a globally widespread aridity event and has been linked to several episodes of societal changes across the globe. Whether this climate event impacted the cultural development in south-central China remains uncertain due to a lack of regional paleorainfall records. We present here stalagmite stable carbon isotope and trace element–based reconstruction of hydroclimatic conditions from south-central China. Our data reveal a sub–millennial scale (~5.6 to 4.3 ka) drying trend in the region followed by a gradual transition to wetter conditions during the 4.2 ka event (4.3–3.9 ka). Together with the existing archaeological evidence, our data suggest that the drier climate before 4.3 ka may have promoted the Shijiahe culture, while the pluvial conditions during the 4.2 ka event may have adversely affected its settlements in low-lying areas. While military conflicts with the Wangwan III culture may have accelerated the collapse of Shijiahe culture, we suggest that the joint effects of climate and the region's topography also played important causal roles in its demise.
To assess the role of dietary creatine on myofiber characteristics and protein synthesis in muscle, we fed grass carp (Ctenopharyngodon idellus, initial body weight: 88.47 ± 1.44 g) creatine-supplemented diets (1.84, 5.91, 8.48, and 15.44 g/kg diet) for 8 weeks. Creatine supplementation did not affect growth performance, but significantly increased creatine contents in muscle and liver. At 8.48 g/kg, creatine decreased the activities of alanine transaminase and aspartate aminotransferase in serum, and improved hardness and chewiness of muscle due to shorter myofiber mean diameter, higher myofiber density and the frequencies of the diameters of class I and III and collagen content, longer sarcomere length, and upregulated mRNA levels of slow myosin heavy chains. Creatine supplementation upregulated the mRNA expressions of myogenic regulatory factors. The 8.48 g/kg creatine-supplemented diet significantly increased the contents of protein, total amino acids (AAs), essential AAs, and free flavor AAs in muscle, the protein levels of insulin-like growth factor I, myogenic differentiation antigen, and peroxisome proliferator-activated receptor-γ coactlvator-1α in muscle, and stimulated the phosphorylation of target of rapamycin (TOR) pathway in muscle. In summary, 8.48 mg/kg creatine improved fish health and skeletal muscle growth, and increased hardness and protein synthesis in muscle of grass carp by affecting myofiber characteristics and the TOR signaling pathway. A second-order regression model revealed that the optimal dietary creatine supplementation of grass carp ranges between 8.48 and 12.04 g/kg.
In this paper, we propose an effective method to compensate for the performance degradation of optically addressed spatial light modulators (OASLMs). The thermal deposition problem usually leads to the on-off ratio reduction of amplitude OASLM, so it is difficult to achieve better results in high-power laser systems. Through the analysis of the laser-induced temperature rise model and the liquid crystal layer voltage model, it is found that reducing the driving voltage of the liquid crystal light valve and increasing the driving current of the optical writing module can compensate for the decrease of on–off ratio caused by temperature rise. This is the result of effectively utilizing the photoconductive effect of Bi12SiO20 (BSO) crystal. The experimental results verify the feasibility of the proposed method and increase the laser withstand power of amplitude-only OASLM by about a factor of 2.5.
Renal fibrosis is common especially in the elderly population. Recently, we found that vitamin D deficiency caused prostatic hyperplasia. This study aimed to investigate whether vitamin D deficiency promotes renal fibrosis and functional impairment. All mice except controls were fed with vitamin D-deficient (VDD) diets, beginning from their early life. The absolute and relative kidney weights on postnatal week 20 were decreased in VDD diet-fed male pups but not in female pups. A mild pathological damage was observed in VDD diet-fed male pups but not in females. Further analysis showed that VDD-induced pathological damage was aggravated, accompanied by renal dysfunction in 40-week-old male pups. An obvious collagen deposition was observed in VDD diet-fed 40-week-old male pups. Moreover, renal α-smooth muscle actin (α-SMA), a marker of epithelial–mesenchymal transition (EMT), and Tgf-β mRNA were up-regulated. The in vitro experiment showed that 1,25-dihydroxyvitamin D3 alleviated transforming growth factor-β1 (TGF-β1)-mediated down-regulation of E-cadherin and inhibited TGF-β1-evoked up-regulation of N-cadherin, vimentin and α-SMA in renal epithelial HK-2 cells. Moreover, 1,25-dihydroxyvitamin D3 suppressed TGF-β1-evoked Smad2/3 phosphorylation in HK-2 cells. These results provide experimental evidence that long-term vitamin D deficiency promotes renal fibrosis and functional impairment, at least partially, through aggravating TGF-β/Smad2/3-mediated EMT in middle-aged male mice.
The X-ray emissions in the interaction of 3–6 MeV Xe23+ ions into thick solid In target are measured. The projectile-to-target and target Lα/Lβ X-ray production intensity ratios are observed to strongly depend on the projectile energy. The dependence deviates from Coulomb ionization predictions, which implies the important roles of coupling between subshells and the activation of 4fσ rotational couplings for projectile energy larger than 5 MeV.
In recent years, there has been a significant thrust toward the development of novel implant alloys based on β-Ti with low Young’s modulus to prevent stress shielding. In this study, porous Ti–Nb–Ta–Zr alloys with porosity of <55% and macro-pore size of 100–400 μm for biomedical applications were successfully fabricated by a space-holder method. The microstructure and compressive behavior were studied. The results show that the micro-pore size of porous Ti–Nb–Ta–Zr alloys decreases with an increase in the amount of the process control agent (PCA), which has no obvious effect on the porosity and the macro-pore size formed by the space holder. Porous Ti–Nb–Ta–Zr alloys fail mainly because of the cleavage and ductile fracture with some dimples in compression. The compressive modulus increases from 0.6 to 6.5 GPa with the increase in the PCA and decrease of the space holder. The influence mechanism has been analyzed by the finite element calculation and the Gibson–Ashby model.
The modification of halloysite nanotubes (HNTs) as fillers is very effective at improving the performance of polymers. A novel modification of HNTs through grafting dodecylamine onto their surfaces was conducted here. Owing to the improvement in dispersibility of HNTs in polytetrafluoroethylene (PTFE), the mechanical properties and wear resistance (in particular) of the dodecylamine-modified HNT-filled PTFE composite were enhanced significantly.
Objective: Deficits in the semantic learning strategy were observed in subjects with amnestic mild cognitive impairment (aMCI) in our previous study. In the present study, we explored the contributions of executive function and brain structure changes to the decline in the semantic learning strategy in aMCI. Methods: A neuropsychological battery was used to test memory and executive function in 96 aMCI subjects and 90 age- and gender-matched healthy controls (HCs). The semantic clustering ratio on the verbal learning test was calculated to evaluate learning strategy. Medial temporal lobe atrophy (MTA) and white matter hyperintensities (WMH) were measured on MRI with the MTA and Fazekas visual rating scales, respectively. Results: Compared to HCs, aMCI subjects had poorer performance in terms of memory, executive function, and the semantic clustering ratio (P < .001). In aMCI subjects, no significant correlation between learning strategy and executive function was observed. aMCI subjects with obvious MTA demonstrated a lower semantic clustering ratio than those without MTA (P < .001). There was no significant difference in the learning strategies between subjects with high-grade WMH and subjects with low-grade WMH. Conclusion: aMCI subjects showed obvious impairment in the semantic learning strategy, which was attributable to MTA but independent of executive dysfunction and subcortical WMH. These findings need to be further validated in large cohorts with biomarkers identified using volumetric brain measurements. (JINS, 2019, 25, 706–717)
In order to improve the dispersibility of halloysite nanotubes (HNTs) in polytetrafluoroethylene (PTFE), the modification of HNT surfaces was studied with three types of modifiers (polymethyl methacrylate [PMMA], sodium dodecyl sulfate [SDS] and carboxylic acid). The modified HNTs were characterized by Fourier-transform infrared (FTIR) spectrometry, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and contact angle measurements. The HNTs were used to reinforce the mechanical properties of PTFE. The mechanical results indicated that the tensile strength of the modified HNT-filled PTFE nanocomposites (F-HNT/PTFE) improved to an acceptable degree and Young's modulus increased significantly. The tribological results showed that the wear rate of F-HNT/PTFE decreased by 21–82 and 9–40 times compared to pure PTFE and the pristine F-HNT/PTFE, respectively.
The aim of this study was to investigate the in vivo degradation mechanism and the mechanical properties of poly(lactide-co-glycolide)/beta-tricalcium phosphate (PLGA/β-TCP) composite anchors. Anchors composed of PLGA and β-TCP were implanted in the dorsal subcutaneous tissue of beagle dogs for 6, 12, 16, and 26 weeks. The degradation of the materials was evaluated by measuring the changes in thermal behavior, crystallinity, and mechanical properties. Scanning electron microscope (SEM) was used to observe the surface and longitudinal section of the material. The evaluation of mechanical strength retention and degradation properties suggest that the addition of β-TCP particles efficiently enhances their mechanical properties and thermal characteristics and delays their degradation rate. By analyzing the results of SEM, X-ray diffraction, and differential scanning calorimetry, we can infer that after 12 weeks, the connection between β-TCP and PLGA becomes less compact, which accelerates the decline of mechanical strength.
Introduction: To investigate the effects of paroxetine (PAR) on motor and cognitive function recovery in patients with non-depressed ischemic stroke (nD-AIS).
Methods: One hundred sixty-seven patients hospitalized for non-depressed acute ischemic stroke were selected and divided into treatment (T) and control (C) groups using a random number table. All patients received conventional secondary ischemic stroke prevention and rehabilitation training; patients in Group T additionally received treatment with PAR (10 mg/day during week 1 and 20 mg/day thereafter) for 3 months. The follow-up observation lasted 6 months. The Fugl–Meyer motor scale (FMMS), Montreal cognitive assessment (MoCA), and Hamilton depression scale (HAMD) were used on D0, D15, D90, and D180 (T0, 1, 2, and 3, respectively; D180 = 90 days after treatment cessation) after study initiation, and scores were compared between the groups.
Results: The FMMS and MoCA scores differed significantly between Groups T and C at T2 and T3 (p < .05); by contrast, these scores did not differ significantly between the groups at T1 (p > .05). Furthermore, the HAMD scores differed significantly between the two groups at T3 (p < .05), but not at T1 and T2 (p > .05).
Conclusions: PAR treatment may improve motor and cognitive function recovery in patients with nD-AIS. Moreover, PAR may reduce the occurrence of depression after stroke.
Halloysite nanotubes (HNTs)/polytetrafluoroethylene (PTFE) nanocomposites were prepared by the cold compression moulding method. The effects of addition of HNTs (HNTs ‘filling’) on the performances of PTFE were explored using X-ray diffraction, Fourier Transform infrared spectroscopy, scanning electron microscopy and thermogravimetric analysis which showed that HNTs were well dispersed in the PTFE matrix by means of physical mixing at lower contents of 2–5 wt.%; the introduction of HNTs into PTFE could improve the heat stability of the PTFE. Furthermore, the mechanical and tribological performances of the nanocomposites were measured to examine the filling effect. The tensile strength of the HNTs/PTFE nanocomposites at 2–5 wt.% HNTs content increased by ~3.5% while their wear rates decreased by 55–90% relative to pure PTFE, clear proof of the filling effect of HNTs with a high aspect ratio.
We examined the in vitro developmental competence of parthenogenetic activation (PA) oocytes activated by an electric pulse (EP) and treated with various concentrations of AZD5438 for 4 h. Treatment with 10 µM AZD5438 for 4 h significantly improved the blastocyst formation rate of PA oocytes in comparison with 0, 20, or 50 µM AZD5438 treatment (46.4% vs. 34.5%, 32.3%, and 24.0%, respectively; P < 0.05). The blastocyst formation rate was higher in the group treated with AZD5438 for 4 h than in the groups treated with AZD5438 for 2 or 6 h (42.8% vs. 38.6% and 37.2%, respectively; P > 0.05). Furthermore, 66.67% of blastocysts derived from these AZD5438-treated PA oocytes had a diploid karyotype. The blastocyst formation rate of PA and somatic cell nuclear transfer (SCNT) embryos was similar between oocytes activated by an EP and treated with 2 mM 6-dimethylaminopurine for 4 h and those activated by an EP and treated with 10 µM AZD5438 for 4 h (11.11% vs. 13.40%, P > 0.05). In addition, the level of maturation-promoting factor (MPF) was significantly decreased in oocytes activated by an EP and treated with 10 µM AZD5438 for 4 h. Finally, the mRNA expression levels of apoptosis-related genes (Bax and Bcl-2) and pluripotency-related genes (Oct4, Nanog, and Sox2) were checked by RT-PCR; however, there were no differences between the AZD5438-treated and non-treated control groups. Our results demonstrate that porcine oocyte activation via an EP in combination with AZD5438 treatment can lead to a high blastocyst formation rate in PA and SCNT experiments.
The East Asian–Australasian flyway contains some of the most threatened habitats in the world, with at least 155 waterbird species reliant on the tidal habitats it comprises. The black-faced spoonbill (Platalea minor) is an iconic endangered species distributed across the coast of East Asia. Its population suffered a severe decline into the 1990s, but extensive monitoring and conservation interventions have aided a substantial recovery of the species. We used a population viability analysis based on data collected over the past two decades in conjunction with species distribution models to project spatially explicit models of population change for the next 35 years. Over nearly all scenarios of habitat loss and climate change, the global spoonbill population was projected to increase in the short-term due to low population numbers likely well below current population carrying capacities. However, climate change and habitat loss together threaten the recovery of the spoonbill population such that, by 2050, population declines are apparent as a consequence of these cumulative impacts. These threats are also cryptic and represent a challenge to the conservation of species recovering from anthropogenic impacts; observed population increases can hide large reductions in habitat suitability that threaten the long-term viability of species.