We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Understanding the patterns of treatment response is critical for the treatment of patients with schizophrenia; one way to achieve this is through using a longitudinal dynamic process study design.
Aims
This study aims to explore the response trajectory of antipsychotics and compare the treatment responses of seven different antipsychotics over 6 weeks in patients with schizoprenia (trial registration: Chinese Clinical Trials Registry Identifier: ChiCTR-TRC-10000934).
Method
Data were collected from a multicentre, randomised open-label clinical trial. Patients were evaluated with the Positive and Negative Syndrome Scale (PANSS) at baseline and follow-up at weeks 2, 4 and 6. Trajectory groups were classified by the method of k-means cluster modelling for longitudinal data. Trajectory analyses were also employed for the seven antipsychotic groups.
Results
The early treatment response trajectories were classified into a high-trajectory group of better responders and a low-trajectory group of worse responders. The results of trajectory analysis showed differences compared with the classification method characterised by a 50% reduction in PANSS scores at week 6. A total of 349 patients were inconsistently grouped by the two methods, with a significant difference in the composition ratio of treatment response groups using these two methods (χ2 = 43.37, P < 0.001). There was no differential contribution of high- and low trajectories to different drugs (χ2 = 12.52, P = 0.051); olanzapine and risperidone, which had a larger proportion in the >50% reduction at week 6, performed better than aripiprazole, quetiapine, ziprasidone and perphenazine.
Conclusions
The trajectory analysis of treatment response to schizophrenia revealed two distinct trajectories. Comparing the treatment responses to different antipsychotics through longitudinal analysis may offer a new perspective for evaluating antipsychotics.
The aim of this study was to determine the most cost-effective strategy for the prevention and control of multidrug-resistant organisms (MDROs) in intensive care units (ICUs) in areas with limited health resources. The study was conducted in 12 ICUs of four hospitals. The total cost for the prevention of MDROs and the secondary attack rate (SAR) of MDROs for each strategy were collected retrospectively from 2046 subjects from January to December 2017. The average cost-effectiveness ratio (CER), incremental cost-effectiveness ratio (ICER) and cost-effectiveness acceptability curve were calculated. Hand hygiene (HH) had the lowest total cost (2149.6 RMB) and SAR of MDROs (8.8%) while single-room isolation showed the highest cost (33 700.2 RMB) and contact isolation had the highest SAR of MDROs (31.8%). The average cost per unit infection prevention was 24 427.8 RMB, with the HH strategy followed by the environment disinfection strategy (CER = 21 314.67). HH had the highest iterative cost effect under willingness to pay less than 2000 RMB. Due to the low cost for repeatability and obvious effectiveness, we conclude that HH is the optimal strategy for MDROs infections in ICUs in developing countries. The cost-effectiveness of the four prevention strategies provides some reference for developing countries but multiple strategies remain to be examined.
Sea ice is composed of columnar-shaped grains. To investigate the influence of the loading direction on the uniaxial compressive strength and failure processes of sea ice, field experiments were performed with first-year level ice. Loads were applied both horizontally (parallel to the grain columns) and vertically (across the grain columns) with various nominal strain rates. Two failure modes have been observed: a ductile failure mode at low nominal strain rates, and a brittle failure mode at high nominal strain rates. However, the failure pattern of sea ice was clearly dependent on the loading direction. At low nominal strain rates (ductile failure mode), the sea-ice samples yielded due to the development of wing cracks under horizontal loading and due to splaying out at one end under vertical loading. When sea ice fails in the ductile mode, the deformation is driven by grain boundary sliding under horizontal loading and by grain decohesion and crystal deflection under vertical loading. At high nominal strain rates (brittle failure mode), the sea-ice samples failed in shear faulting under horizontal loading and in cross-column buckling under vertical loading. The nominal strain rate at the brittle–ductile transition zone is about ten times higher under vertical loading.
In this paper, the atomic resolution high-angle annular dark-field scanning transmission electron microscope (HAADF-STEM) was used as the main research method. Using HAADF-STEM, two types of long-period stacking ordered structure (LPSO)—14H and 18R-LPSO—were observed in Mg96Gd2Y1Ni1 alloy, and the precipitates at various stages of aging were observed. Moreover, a type of rectangular β precipitates were found, and the atomic models of β precipitates along the [0001]Mg and
${\tf="TeXGyrePagella-Bold (TrueType)"\char9001} 11\bar 20\hbox{]}_{{\rm{Mg}}}$
directions were identified. At the aging peak stage, a three-dimensional network structure composed of LPSO/γ′ precipitates and β′ precipitates and β precipitates was observed. The hardness of the unaged homogenized Mg96Gd2Y1Ni1 alloy was only 87 HV and the hardness value of aging peak was 128.4 HV. Compared with the unaged alloy, the hardness of the peak-aged alloy increased by 47.59%. The composite strengthening of the three types of precipitates induced a significant strengthening to the alloy.
We report on a high-power Ho:YAG single-crystal fiber (SCF) laser inband pumped by a high-brightness Tm-fiber laser at 1908 nm. The Ho:YAG SCF grown by the micro-pulling-down technique exhibits a propagation loss of $0.05\pm 0.005~\text{cm}^{-1}$ at $2.09~\unicode[STIX]{x03BC}\text{m}$. A continuous-wave output power of 35.2 W is achieved with a slope efficiency of 42.7%, which is to the best of our knowledge the highest power ever reported from an SCF-based laser in the 2 $\unicode[STIX]{x03BC}\text{m}$ spectral range.
The vortex sound interaction in acoustic resonance induced by vortex shedding from a cylinder in a flow duct is numerically studied based on a nonlinear physical model, which consists of three meshless sub-models describing the vortex shedding, sound generation and propagation within the duct. In addition, the acoustic particle velocity near the separation point of the shear layer is solved and added onto the Kutta condition of the vortex shedding, which takes the acoustic feedback effect into consideration and makes the vortex sound interaction bi-directional. The predicted results of resonant frequency and amplitude are found to be in conformity with previous experiment data, especially, a continuous description of the onset–sustain–cease of lock-in phenomenon is well captured. The lock-in phenomenon is depicted as a vigorous competition between the vortex shedding frequency
$(f_{s})$
and the inherent frequency of the acoustic
$\unicode[STIX]{x1D6FD}$
-mode
$(f_{a})$
. The mutual capturing behaviour of these two frequencies is dominated by
$f_{a}$
. Moreover,
$f_{s}$
cannot always be locked onto
$f_{a}$
within the whole lock-in region, which is in marked contrast to the previous understanding. In this aspect, two lock-in regions, the synchronous region and the
$\unicode[STIX]{x1D6FD}$
-mode dominant region, are defined according to the relevance of
$f_{s}$
and
$f_{a}$
. The maximum resonant sound appears at the end of the synchronous region. The present model not only predicts the proper characteristics of frequency lock-in as observed in experiments, but also helps to provide a more detailed understanding of the underlying lock-in mechanism.
Aging treatment plays an important role in strengthening of 2198 Al–Li alloy. Through a serious of heat treatment processes, a large amount of precipitates emerge, mainly observed to be θ′(Al2Cu), Al3Zr, and T1(Al2CuLi), among which, T1 turns to be the most important precipitate that contributes to the strengthening of 2198 Al–Li alloy. While the temperature of the aging process is 175 °C, the density and size of T1 phase keep increasing through the process and reach peak in about 18 h. T1 phase tends to have a certain orientation relationship of
${\left( {0001} \right)_{{{\rm{T}}_1}}}//{\left\{ {111} \right\}_{{\rm{Al}}}}$
,
${\left\langle {1010} \right\rangle _{{{\rm{T}}_{\rm{1}}}}}//{\left\langle {110} \right\rangle _{{\rm{Al}}}}$
and may have different kinds of multilayered structures. In most of the multilayered structures, the distance between two adjacent copper-rich laths is less than that in classical single-layered phase. Thus, it can be inferred that the microstructure of T1 phase might change in the process of developing from single-layered structure to multilayered structure. In addition, the interactions between different phases become relatively frequent when the density of T1 phase reaches a threshold.
Underground Nuclear Astrophysics in China (JUNA) will take the advantage of the ultra-low background in Jinping underground lab. High current accelerator with an ECR source and detectors were commissioned. JUNA plans to study directly a number of nuclear reactions important to hydrostatic stellar evolution at their relevant stellar energies. At the first period, JUNA aims at the direct measurements of 25Mg(p,γ)26 Al, 19F(p,α) 16 O, 13C(α, n) 16O and 12C(α,γ) 16O near the Gamow window. The current progress of JUNA will be given.
Effective suppression of transverse stimulated Raman scattering (TSRS) in a large-aperture potassium dihydrogen phosphate (KDP) crystal is an important scientific and technical problem in high-intensity laser research and applications. In this work, a method to suppress TSRS using pulse stacking is proposed. The method suppresses TSRS significantly, with greater numbers of subpulses producing more obvious suppression effects, and the threshold intensity growth rate of the 3ω laser in the KDP crystal reaches up to about 1.9 when the stacked pulse contains four subpulses. This suppression effect is attributed to the fact that the polarization directions of adjacent subpulses are perpendicular to each other. The method can be used to suppress other nonlinear effects, including transverse stimulated Brillouin scattering in large-aperture optical devices and stimulated rotational Raman scattering in long air paths.
Dyeing wastewater has caused serious environmental problems nowadays. In this work, nickel–phosphorus plating–titanium dioxide (Ni-P-TiO2) electroless plating polyimide (PI) fabric was fabricated as an excellent visible light response composite. First, polyaniline (PANI) was in situ polymerized on the surface of the PI fabric. Second, PANI reduced palladium ions to be active seeds for initiating electroless plating of Ni-P-TiO2 layer. Finally, the Ni-P-TiO2/PANI/PI fabric with all-in-one structure was prepared, which can effectively overcome the drawbacks of poor loading fastness and insensitivity to visible light response. It was characterized by scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, thermogravimetric analysis, and ultraviolet–visible diffuse reflectance spectroscopy. The photocatalytic activity was evaluated by degrading reactive blue 19, methylene blue, and reactive red (M-3BE) under visible light irradiation. The results show that the degradation rates of the all three dyes were over 91% with robust cycle stability for repeated 5 cycles of use. The possible photocatalytic degradation mechanism of fabrics was also proposed based on free radical and hole removal experiments.
We report on the study of single-mode fiber-laser-pumped mode-locked Yb:CALYO lasers via using a passive saturable absorber and Kerr-lens mode-locking technique, respectively. Up to 3.1-W average power with 103-fs pulse duration is obtained from the passive mode-locking, and down to 36-fs pulse duration with more than 2-W average power is achieved by the pure Kerr-lens mode-locking, which is to the best of our knowledge, the highest average power from a reported sub-40-fs Yb-based solid-state oscillator.
Transverse stimulated Raman scattering (TSRS) is strongly generated in the third-harmonic-generation crystal potassium dihydrogen phosphate (KDP) and can even damage the KDP crystal in inertial confinement fusion drivers. In this work, a method to suppress TSRS is proposed in which the polarization control plate (PCP) is moved to a new position in the existing optical path. The proposed method can suppress TSRS significantly and doubles the laser threshold intensity in KDP crystal when the order of the PCP is 16. This result is attributed to the reduction of the gain length for the Stokes radiation. The proposed method may also be used to suppress other nonlinear effects, including transverse stimulated Brillouin scattering in large-aperture optical components.
The grazing incidence diffraction (GID) method in side inclination mode, described by Ma et al. in 2002, of polycrystalline thin-film residual stress was revisited and explained using simple geometric relations. To overcome the issue of decreasing peak intensity of this method, which is induced by the decreasing incident angle because of the Eulerian cradle Chi-tilt, an improvement of Omega (ω)–Phi (φ) compensation was devised and applied to a NiFe thin-film sample. The geometry of this improved ω–φ compensated GID method in side inclination mode is detailed in this paper. This improvement guarantees a constant incident angle on the sample surface and a fixed sample illumination volume during measurement. The measured data were analysed using parametric refinement in DIFFRAC.TOPAS v6 software in Launch Mode, and details of the input file (.INP) are explained in this paper. The tensile stress of the NiFe thin-film sample was measured to be 1181 ± 85 MPa using this improved method.
We prove that, for
$C^{1}$
-generic diffeomorphisms, if a homoclinic class is not hyperbolic, then there is a non-trivial non-hyperbolic ergodic measure supported on it. This proves a conjecture by Díaz and Gorodetski.
The oxidation behavior of nonstoichiometric Ti2AlCx (x = 0.69) powders synthesized by combustion synthesis was investigated in flowing air by means of simultaneous thermal gravimetric analysis-differential thermal analysis, X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscope/energy dispersive spectroscopy, with an effect of powder size. The oxidation of the fine Ti2AlC powders with the size of about 1 μm starts at 300 °C and completes at 980 °C, while with increasing the powder size around 10 μm the corresponding temperature increases to 400 and 1040 °C, respectively. The oxidation of nonstoichiometric Ti2AlCx (x = 0.69) powders is controlled by surface reaction in 400–600 °C, and mainly diffusion in 600–900 °C, with the corresponding oxidation activation energy of 2.35 eV and 0.12 eV, respectively. In other words, the critical temperature of changing oxidation controlling step is around 600 °C. The oxidation products were mainly rutile-TiO2 and α-Al2O3. The tiny white flocculent particles of α-Al2O3 appeared on the surface of fine Ti2AlC powders and increased with increasing the oxidation temperature.
We prove that, for
$C^{1}$
-generic diffeomorphisms, if the periodic orbits contained in a homoclinic class
$H(p)$
have all their Lyapunov exponents bounded away from zero, then
$H(p)$
must be (uniformly) hyperbolic. This is in the spirit of the works on the stability conjecture, but with a significant difference that the homoclinic class
$H(p)$
is not known isolated in advance, hence the ‘weak’ periodic orbits created by perturbations near the homoclinic class have to be guaranteed strictly inside the homoclinic class. In this sense the problem is of an ‘intrinsic’ nature, and the classical proof of the stability conjecture does not work. In particular, we construct in the proof several perturbations which are not simple applications of the connecting lemmas.