We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Epidemiologic research has increasingly acknowledged the importance of developmental origins of health and disease (DOHaD) and suggests that prior exposures can be transferred across generations. Multigenerational cohorts are crucial to verify the intergenerational inheritance among human subjects. We carried out this scoping review aims to summarize multigenerational cohort studies’ characteristics, issues, and implications and hence provide evidence to the DOHaD and intergenerational inheritance. We adopted a comprehensive search strategy to identify multigenerational cohorts, searching PubMed, EMBASE, and Web of Science databases from the inception of each dataset to June 20th, 2022, to retrieve relevant articles. After screening, 28 unique multigenerational cohort studies were identified. We classified all studies into four types: population-based cohort extended three-generation cohort, birth cohort extended three-generation cohort, three-generation cohort, and integrated birth and three-generation cohort. Most cohorts (n = 15, 53%) were categorized as birth cohort extended three-generation studies. The sample size of included cohorts varied from 41 to 167,729. The study duration ranged from two years to 31 years. Most cohorts had common exposures, including socioeconomic factors, lifestyle, and grandparents’ and parents’ health and risk behaviors over the life course. These studies usually investigated intergenerational inheritance of diseases as the outcomes, most frequently, obesity, child health, and cardiovascular diseases. We also found that most multigenerational studies aim to disentangle genetic, lifestyle, and environmental contributions to the DOHaD across generations. We call for more research on large multigenerational well-characterized cohorts, up to four or even more generations, and more studies from low- and middle-income countries.
Obsessive-compulsive personality disorder (OCPD) is a high-prevalence personality disorder characterized by subtle but stable interpersonal dysfunction. There have been only limited studies addressing the behavioral patterns and cognitive features of OCPD in interpersonal contexts. The purpose of this study was to investigate how behaviors differ between OCPD individuals and healthy controls (HCs) in the context of guilt-related interpersonal responses.
Method
A total of 113 participants were recruited, including 46 who were identified as having OCPD and 67 HCs. Guilt-related interpersonal responses were manipulated and measured with two social interactive tasks: the Guilt Aversion Task, to assess how anticipatory guilt motivates cooperation; and the Guilt Compensation Task, to assess how experienced guilt induces compensation behaviors. The guilt aversion model and Fehr–Schmidt inequity aversion model were adopted to analyze decision-making in the Guilt Aversion Task and the Guilt Compensation Task, respectively.
Results
Computational model-based results demonstrated that, compared with HCs, the OCPD group exhibited less guilt aversion when making cooperative decisions as well as less guilt-induced compensation after harming others.
Conclusion
Our findings indicate that individuals with OCPD tend to be less affected by guilt than HCs. These impairments in guilt-related responses may prevent adjustments in behaviors toward compliance with social norms and thus result in interpersonal dysfunctions.
Autism spectrum disorder (ASD) is a neurodevelopmental condition, with symptoms appearing in the early developmental period. Little is known about its current burden at the global, regional and national levels. This systematic analysis aims to summarise the latest magnitudes and temporal trends of ASD burden, which is essential to facilitate more detailed development of prevention and intervention strategies.
Methods
The data on ASD incidence, prevalence, disability-adjusted life years (DALYs) in 204 countries and territories between 1990 and 2019 came from the Global Burden of Disease Study 2019. The average annual percentage change was calculated to quantify the secular trends in age-standardised rates (ASRs) of ASD burden by region, sex and age.
Results
In 2019, there were an estimated 60.38 × 104 [95% uncertainty interval (UI) 50.17–72.01] incident cases of ASD, 283.25 × 105 (95% UI 235.01–338.11) prevalent cases and 43.07 × 105 (95% UI 28.22–62.32) DALYs globally. The ASR of incidence slightly increased by around 0.06% annually over the past three decades, while the ASRs of prevalence and DALYs both remained stable over the past three decades. In 2019, the highest burden of ASD was observed in high-income regions, especially in high-income North America, high-income Asia Pacific and Western Europe, where a significant growth in ASRs was also observed. The ASR of ASD burden in males was around three times that of females, but the gender difference was shrunk with the pronounced increase among females. Of note, among the population aged over 65 years, the burden of ASD presented increasing trends globally.
Conclusions
The global burden of ASD continues to increase and remains a major mental health concern. These substantial heterogeneities in ASD burden worldwide highlight the need for making suitable mental-related policies and providing special social and health services.
Energy homeostasis is essential for organisms to maintain fluctuation in energy accumulation, mobilization. Lipids as the main energy reserve in insects, their metabolism is under the control of many physiological program. This study aimed to determine whether the adipokinetic hormone receptor (AKHR) was involved in the lipid mobilization in the Spodoptera litura. A full-length cDNA encoding AKHR was isolated from S. litura. The SlAKHR protein has a conserved seven-transmembrane domain which is the character of a putative G protein receptor. Expression profile investigation revealed that SlAKHR mRNA was highly expressed in immatural stage and abundant in fat body in newly emerged female adults. Knockdown of SlAKHR expression was achieved through RNAi by injecting double-stranded RNA (dsRNA) into the 6th instar larvae. The content of triacylgycerol (TAG) in the fat body increased significantly after the SlAKHR gene was knockdown. And decrease of TAG releasing to hemolymph with increase of free fatty acid (FFA) in hemolymph were observed when the SlAKHR gene was knowned-down. In addition, lipid droplets increased in fat body was also found. These results suggested that SlAKHR is critical for insects to regulate lipids metabolism.
Numerous animal models and epidemiological and observational studies have demonstrated that enterovirus (EV) infection could be involved in the development of clinical type 1 diabetes mellitus (T1DM), but its aetiology is not fully understood. Therefore, we reviewed the association between EV infection and clinical T1DM. We searched PubMed and Embase from inception to April 2021 and reference lists of included studies without any language restrictions in only human studies. The correlation between EV infection and clinical T1DM was calculated as the pooled odds ratio (OR) and 95% confidence intervals (CIs), analysed using random-effects models. Subgroup and sensitivity analyses were performed to evaluate the robustness of the associations. A total of 25 articles (22 case–control studies and three nested case–control studies) met the inclusion criterion including 4854 participants (2948 cases and 1906 controls) with a high level of statistical heterogeneity (I2 = 80%, P < 0.001) mainly attributable to methods of EV detection, study type, age distribution, source of EV sample and control subjects. Meta-analysis showed a significant association between EV infection and clinical T1DM (OR 5.75, 95% CI 3.61–9.61). There is a clinically significant association between clinical T1DM and EV infection.
Across Eurasia, horse transport transformed ancient societies. Although evidence for chariotry is well dated, the origins of horse riding are less clear. Techniques to distinguish chariotry from riding in archaeological samples rely on elements not typically recovered from many steppe contexts. Here, the authors examine horse remains of Mongolia's Deer Stone-Khirigsuur (DSK) Complex, comparing them with ancient and modern East Asian horses used for both types of transport. DSK horses demonstrate unique dentition damage that could result from steppe chariotry, but may also indicate riding with a shallow rein angle at a fast gait. A key role for chariots in Late Bronze Age Mongolia helps explain the trajectory of horse use in early East Asia.
A moderately diverse assemblage of brachiopods from the Latham Shale Lagerstätte (Cambrian Series 2, upper Stage 4) and the upper Cadiz Formation (Miaolingian, Wuliuan), California is described in detail for the first time. The fauna includes both linguliform and rhynchonelliform brachiopods—Hadrotreta primaea (Walcott, 1902), Paterina prospectensis (Walcott, 1884), Dictyonina pannula (White, 1874), and Mickwitzia occidens Walcott, 1908; and Nisusia fulleri Mount, 1981 and Wimanella highlandensis (Walcott, 1886), respectively—together with olenellid trilobites and hyolithids. The fauna differs from other Cambrian Konservat-Lagerstätten (notably Cambrian Series 2 Chengjiang and Guanshan Lagerstätten, eastern Yunnan) in that the brachiopod shell valves in many cases are still preserved with their original mineralization. Moreover, the excellently preserved shale-hosted valves even include cases with exquisite epithelial cell molds, otherwise only seen in acid-etched material from carbonate rocks. The pitted ornamentation in D. pannula closely resembles that described from Ordovician linguliforms. The unusual preservation of N. fulleri provides important clues for ancestral composition of the brachiopod shell. The two articulated rhynchonelliform species probably represent the oldest records of this group from the west Laurentia. The fauna could also represent the earliest onset of the transition from the Cambrian Evolutionary Fauna (CEF) to the Paleozoic Evolutionary Fauna (PEF).
In this paper, an all-fiberized and narrow-linewidth 5 kW power-level fiber amplifier is presented. The laser is achieved based on the master oscillator power amplification configuration, in which the phase-modulated single-frequency laser is applied as the seed laser and a bidirectional pumping configuration is applied in the power amplifier. The stimulated Brillouin scattering, stimulated Raman scattering, and transverse mode instability effects are all effectively suppressed in the experiment. Consequently, the output power is scaled up to 4.92 kW with a slope efficiency of as high as approximately 80%. The 3-dB spectral width is about 0.59 nm, and the beam quality is measured to be M2∼1.22 at maximum output power. Furthermore, we have also conducted a detailed spectral analysis on the spectral width of the signal laser, which reveals that the spectral wing broadening phenomenon could lead to the obvious decrease of the spectral purity at certain output power. Overall, this work could provide a reference for obtaining and optimizing high-power narrow-linewidth fiber lasers.
The fiber laser based on an oscillating-amplifying integrated structure has the potential to benefit from the advantages of a fiber laser oscillator and amplifier with the characteristics of strong anti-back-reflected light ability and high efficiency. Here, we achieved a 3.5-kW near-single-mode (M2 ∼ 1.24) oscillating–amplifying integrated fiber laser with an active fiber length of 8 m in the oscillating section and 17.6 m in the amplifying section. While operating at the maximum power, the optical-to-optical conversion efficiency is 87.0%, and the intensity of stimulated Raman scattering is about 23.61 dB lower than that of the signal light. To the best of the authors’ knowledge, this is the highest output power of an oscillating–amplifying integrated fiber laser, accompanied with the best beam quality and the highest efficiency.
Power scaling based on traditional ytterbium-doped fibers (YDFs) is limited by optical nonlinear effects and transverse mode instability (TMI) in high-power fiber lasers. Here, we propose a novel long tapered fiber with a constant cladding and tapered core (CCTC) along its axis direction. The tapered-core region of the fiber is designed to enhance the stimulated Raman scattering (SRS) threshold and suppress higher-order mode resonance in the laser cavity. The CCTC YDF was fabricated successfully with a modified chemical vapor deposition (MCVD) method combined with solution doping technology, which has a cladding diameter of 400 μm and a varying core with a diameter of ~24 μm at both ends and ~31 μm in the middle. To test the performance of the CCTC fiber during high-power operation, an all-fiber laser oscillator based on a CCTC YDF was investigated experimentally. As a result, a maximum output power of 3.42 kW was achieved with an optical-to-optical efficiency of 55.2%, although the TMI effect was observed at an output power of ~3.12 kW. The measured beam quality (M2 factor) was ~1.7, and no sign of the Raman component was observed in the spectrum. We believe that CCTC YDF has great potential to simultaneously mitigate the SRS and TMI effects, and further power scaling is promising by optimizing the structure of the YDF.
Anxiety disorders are widespread across the world. A systematic understanding of the disease burden, temporal trend and risk factors of anxiety disorders provides the essential foundation for targeted public policies on mental health at the national, regional, and global levels.
Methods
The estimation of anxiety disorders in the Global Burden of Disease Study 2019 using systematic review was conducted to describe incidence, prevalence and disability-adjusted life years (DALYs) in 204 countries and regions from 1990 to 2019. We calculated the estimated annual percentage change (EAPC) to quantify the temporal trends in anxiety disorders burden by sex, region and age over the past 30 years and analysed the impact of epidemiological and demographic changes on anxiety disorders.
Results
Globally, 45.82 [95% uncertainty interval (UI): 37.14, 55.62] million incident cases of anxiety disorders, 301.39 million (95% UI: 252.63, 356.00) prevalent cases and 28.68 (95% UI: 19.86, 39.32) million DALYs were estimated in 2019. Although the overall age-standardised burden rate of anxiety disorders remained stable over the past three decades, the latest absolute number of anxiety disorders increased by 50% from 1990. We observed huge disparities in both age-standardised burden rate and changing trend of anxiety disorders in sex, country and age. In 2019, 7.07% of the global DALYs due to anxiety disorders were attributable to bullying victimisation, mainly among the population aged 5–39 years, and the proportion increased in almost all countries and territories compared with 1990.
Conclusion
Anxiety disorder is still the most common mental illness in the world and has a striking impact on the global burden of disease. Controlling potential risk factors, such as bullying, establishing effective mental health knowledge dissemination and diversifying intervention strategies adapted to specific characteristics will reduce the burden of anxiety disorders.
Diverse and abundant fossil taxa have been described in the lower Cambrian Shipai Formation in the Three Gorges area of Hubei Province, South China, but the taxonomy and diversity of the co-occurring brachiopod fauna are still far from clear. Here we describe the brachiopod fauna recovered from the Shipai Formation in the Three Gorges area of South China, including representatives of the subphylum Linguliformea: linguloids (Lingulellotreta ergalievi, Eoobolus malongensis, and Neobolidae gen. indet. sp. indet.), and an acrotretoid (Linnarssonia sapushanensis); and representatives from the subphylum Rhynchonelliformea: the calcareous-shelled Kutorginates (Kutorgina sinensis, Kutorgina sp., and Nisusia liantuoensis). This brachiopod assemblage and the first occurrence of Linnarssonia sapushanensis shell beds permit correlation of the Shipai Formation in the Three Gorges area of Hubei Province with the Stage 4 Wulongqing Formation in the Wuding area of eastern Yunnan. This correlation is further strengthened by the first appearance datum (FAD) of the rhynchonelliform brachiopod Nisusia in the upper silty mudstone of both the Shipai and Wulongqing formations. The new well-preserved material, derived from siliciclastic rocks, also gives critical new insights into the fine shell structure of L. sapushanensis. Microstructural studies on micromorphic acrotretoids (like Linnarssonia) have previously been restricted to fossils that were acid-etched from limestones. This is the first study to carry out detailed comparative ultrastructural studies on acrotretoid shells preserved in siliciclastic rocks. This work reveals a hollow tube and solid column microstructure in the acrotretoid shells from the Shipai Formation, which is likely to be equivalent of traditional column and central canal observed in shells dissolved from limestones.
Brachiopod shell accumulations are abundant and diverse in the lower Cambrian strata of Yunnan Province, South China, but most commonly they are composed of linguloid and acrotheloid brachiopods. Here, we describe the first record of shell beds with high-density accumulations of microscopic acrotretoid brachiopods (usually <2 mm in width) in the muddy deposits of the Wulongqing Formation (Guanshan Biota, Cambrian Stage 4) in the Wuding area of Yunnan Province. The acrotretoid shell beds from the Wulongqing Formation vary from thin mm-thick pavements to more well-developed beds, several centimeters thick. The occurrence of remarkably rich acrotretoid shell beds indicates that microscopic lingulates began to exert an important role in hardening and paving the soft-substrate seafloor during the early Cambrian evolution of Phanerozoic “mixgrounds.” The new Guanshan material is referred to a new species, Linnarssonia sapushanensis n. sp., which differs from other species of Linnarssonia mainly in having a well-developed internal pedicle tube, as well as a relatively longer dorsal median septum. The occurrence of Linnarssonia sapushanensis n. sp. in the Wulongqing Formation in eastern Yunnan extend the oldest record of the genus on the Yangtze Platform of South China back to at least Cambrian Stage 4.
In this paper, we use finite element analysis (FEA) to study the linear viscoelastic response of polyurea, a type of hard–soft block copolymer. A Niblack's algorithm-based technique employed on atomic force microscopy images provides geometry inputs for the FEA model, while the viscoelastic master curves of the soft matrix are obtained via a combination of dynamic mechanical analysis data and molecular dynamic (MD) estimations. In this microstructural image-based FEA framework, we introduce an interphase area of altered properties between the hard and soft domains. Both spatial and property distributions of this interphase area affect the viscoelastic response of the copolymer system. To quantitatively investigate the impact of structural and property features of the interphase on the energy storage and dissipation of a system during linear perturbation, we develop a statistical descriptor representation of the interphase region related to physical parameters. Utilizing decision-tree and random forest concepts from machine learning, we apply a ranking algorithm to identify the most significant features for four different mechanical response descriptors. Results show that the total interphase volume fraction and shifting factor distributions in the interphase area dominate the magnitude of the tan δ peak, whereas the magnitudes of the shifting factors primarily affect the tan δ peak location in frequency space. This method allows us to readily identify the dominant features impacting individual properties and paves the way for material design of hard–soft block copolymer systems.
Cognitive decline in advanced age is closely related to dementia. The trajectory of cognitive function in older Chinese is yet to be fully investigated. We aimed to investigate the trajectories of cognitive function in a nationally representative sample of older people living in China and to explore the potential determinants of these trajectories.
Methods:
This study included 2,038 cognitively healthy persons aged 65–104 years at their first observation in the Chinese Longitudinal Healthy Longevity Survey from 2002 to 2014. Cognitive function was measured using the Chinese version of the Mini-Mental State Examination (MMSE). Group-based trajectory modeling was used to identify potential heterogeneity of longitudinal changes over the 12 years and to investigate associations between baseline predictors of group membership and these trajectories.
Results:
Three trajectories were identified according to the following types of changes in MMSE scores: slow decline (14.0%), rapid decline (4.5%), and stable function (81.5%). Older age, female gender, having no schooling, a low frequency of leisure activity, and a low baseline MMSE score were associated with the slow decline trajectory. Older age, body mass index (BMI) less than 18.5 kg/m2, and having more than one cardiovascular disease (CVD) were associated with the rapid decline trajectory.
Conclusion:
Three trajectories of cognitive function were identified in the older Chinese population. The identified determinants of these trajectories could be targeted for developing prevention and intervention strategies for dementia.
The timing of the Holocene summer monsoon maximum (HSMM) in northeastern China has been much debated and more quantitative precipitation records are needed to resolve the issue. In the present study, Holocene precipitation and temperature changes were quantitatively reconstructed from a pollen record from the sediments of Tianchi Crater Lake in northeastern China using a plant functional type-modern analogue technique (PFT-MAT). The reconstructed precipitation record indicates a gradual increase during the early to mid-Holocene and a HSMM at ~5500–3100 cal yr BP, while the temperature record exhibits a divergent pattern with a marked rise in the early Holocene and a decline thereafter. The trend of reconstructed precipitation is consistent with that from other pollen records in northeastern China, confirming the relatively late occurrence of the HSMM in the region. However, differences in the onset of the HSMM within northeastern China are also evident. No single factor appears to be responsible for the late occurrence of the HSMM in northeastern China, pointing to a potentially complex forcing mechanism of regional rainfall in the East Asian monsoon region. We suggest that further studies are needed to understand the spatiotemporal pattern of the HSMM in the region.
Stimulated Raman scattering (SRS) effect is considered to be one of the main obstacles for power scaling in general-type fiber lasers. Different from previous techniques that aim at suppressing SRS, nonlinear fiber amplifier (NFA), which manipulates and employs the SRS for power scaling in rare-earth-doped fiber, is under intensive research in recent years. In this paper, the authors will present an all-round study on this new kind of high-power fiber amplifier. A theoretical model is proposed based on the rate equation and amplified spontaneous emission (ASE), with random noise taken into account. By numerical solving of the theoretical model, the power scaling potential, heat analysis and advantages in suppressing the undesired backscattering light are quantificationally analyzed for the first time. Then two different types of high-power NFAs are demonstrated individually. Firstly, a laser diode pumped NFA has reached kilowatt output power, and the results agree well with theoretical predictions. Secondly, a tandem-pumped NFA is proposed for the first time and validated experimentally, in which 1.5 kW output power has been achieved. The authors also briefly discuss several new issues relating to the complex nonlinear dynamics that occur in high-power NFAs, which might be interesting topics for future endeavors.
Compared with traditional uniform fibers, tapered fiber has numerous unique advantages, such as larger mode area, higher pump absorption, suppression to nonlinear effects, and maintaining good beam quality. In this manuscript, we have constructed an all-fiberized fiber amplifier which is based on a piece of ytterbium-doped tapered double-clad fiber (T-DCF). The fiber amplifier is operated under continuous wave (CW) regime at 1080 nm wavelength. The $M^{2}$ factor of the amplifier at 1.39 kW output power is ${\sim}1.8$. The maximum output power of the system reached 1.47 kW, which, to the best of our knowledge, is the highest output power of long tapered fiber based fiber laser system. Our result successfully verifies the potential of power scalability and all-fiberized capability of long tapered fiber, and the performance of our system can be further enhanced by fiber design optimization.
The Wa'ergang section in South China has been proposed as a potential Global Stratotype Section and Point (GSSP) for the base of Stage 10, the uppermost stage of the Cambrian System. In this study, high-resolution C-isotopic compositions are reported and we identified three large negative δ13C excursions, namely N1, N2 and N3, at Wa'ergang. The N1 is located just above the First Appearance Datum (FAD) of Lotagnostus americanus, corresponding to the possible base of the Proconodontus posterocostatus conodont Zone. The N2 was identified within the Micragnostus chuishuensis trilobite Zone and the Proconodontus muelleri conodont Zone. The N3 is located in the lowermost part of the Leiagnostus cf. bexelli – Archaeuloma taoyuanense trilobite Zone or Eoconodontus conodont Zone. The N1 and N2 can be correlated with the negative δ13C excursions preceding the Top of Cambrian Carbon Isotope Excursion (TOCE) observed globally. The N3 can be correlated with the TOCE or the HEllnmaria–Red Tops Boundary (HERB) Event. The inter-basinal correlation of N1 and L. americanus strongly supports that the base of Stage 10 may be best defined by the FAD of L. americanus. We also used a box model to quantitatively explore the genesis of the negative δ13C excursions from South China. Our numerical simulations suggest that weathering of the organic-rich sediments on the platform, probably driven by intermittent sea level fall and/or the oxygenation of the Dissolved Organic Carbon (DOC) reservoir in seawater, may have contributed to the generation of the negative δ13C excursions observed in the Stage 10 at Wa'ergang in South China.