We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The aim of this study was to explore the frequency and distribution of gene mutations that are related to isoniazid (INH) and rifampin (RIF)-resistance in the strains of the multidrug-resistant tuberculosis (MDR-TB) Mycobacterium tuberculosis (M.tb) in Beijing, China. In this retrospective study, the genotypes of 173 MDR-TB strains were analysed by spoligotyping. The katG, inhA genes and the promoter region of inhA, in which genetic mutations confer INH resistance; and the rpoB gene, in which genetic mutations confer RIF resistance, were sequenced. The percentage of resistance-associated nucleotide alterations among the strains of different genotypes was also analysed. In total, 90.8% (157/173) of the MDR strains belonged to the Beijing genotype. Population characteristics were not significantly different among the strains of different genotypes. In total, 50.3% (87/173) strains had mutations at codon S315T of katG; 16.8% (29/173) of strains had mutations in the inhA promoter region; of them, 5.5% (15/173) had point mutations at −15 base (C→T) of the inhA promoter region. In total, 86.7% (150/173) strains had mutations at rpoB gene; of them, 40% (69/173) strains had mutations at codon S531L of rpoB. The frequency of mutations was not significantly higher in Beijing genotypic MDR strains than in non-Beijing genotypes. Beijing genotypic MDR-TB strains were spreading in Beijing and present a major challenge to TB control in this region. A high prevalence of katG Ser315Thr, inhA promoter region (−15C→T) and rpoB (S531L) mutations was observed. Molecular diagnostics based on gene mutations was a useful method for rapid detection of MDR-TB in Beijing, China.
Severe fever with thrombocytopenia syndrome (SFTS) is a disease with a high case-fatality rate that is caused by infection with the SFTS virus (SFTSV). Five electronic databases were systematically searched to identify relevant articles published from 1 January 2011 to 1 December 2019. The pooled rates with 95% confidence interval (CI) were calculated by a fixed-effect or random-effect model analysis. The results showed that 92 articles were included in this meta-analysis. For the confirmed SFTS cases, the case-fatality rate was 0.15 (95% CI 0.11, 0.18). Two hundred and ninety-six of 1384 SFTS patients indicated that they had been bitten by ticks and the biting rate was 0.21 (95% CI 0.16, 0.26). The overall pooled seroprevalence of SFTSV antibodies among the healthy population was 0.04 (95% CI 0.03, 0.05). For the overall seroprevalence of SFTSV in animals, the seroprevalence of SFTSV was 0.25 (95% CI 0.20, 0.29). The infection rate of SFTSV in ticks was 0.08 (95% CI 0.05, 0.11). In conclusion, ticks can serve as transmitting vectors of SFTSVs and reservoir hosts. Animals can be infected by tick bites, and as a reservoir host, SFTSV circulates continuously between animals and ticks in nature. Humans are infected by tick bites and direct contact with patient secretions.
The outcomes of dry and wet ears were compared following endoscopic cartilage myringoplasty performed to treat chronic tympanic membrane perforations in patients with mucosal chronic otitis media.
Methods
Patients with chronic perforations, and with mucosal chronic otitis media with or without discharge, were recruited; all underwent endoscopic cartilage myringoplasty. The graft success rate and hearing gain were evaluated at six months post-operatively.
Results
The graft success rates were 85.9 per cent (67 out of 78) in dry ears and 86.2 per cent (25 out of 29) in wet ears; the difference was not significant (p = 0.583). Among the 29 wet ears, the graft success rates were 100 per cent in 11 ears with mucoid discharge and 77.8 per cent in the 18 patients with mucopurulent otorrhoea.
Conclusion
The wet or dry status of ears in patients with chronic perforations with mucosal chronic otitis media did not affect graft success rate or hearing gain after endoscopic cartilage myringoplasty. However, ears with mucopurulent discharge were associated with increased failure rates and graft collapse, whereas ears with mucoid discharge were associated with higher graft success rates.
Guanidinoacetic acid (GAA) can improve the growth performance of bulls. This study investigated the influences of GAA addition on growth, nutrient digestion, ruminal fermentation and serum metabolites in bulls. Forty-eight Angus bulls were randomly allocated to experimental treatments, that is, control, low-GAA (LGAA), medium-GAA (MGAA) and high-GAA (HGAA), with GAA supplementation at 0, 0.3, 0.6 and 0.9 g/kg DM, respectively. Bulls were fed a basal diet containing 500 g/kg DM concentrate and 500 g/kg DM roughage. The experimental period was 104 days, with 14 days for adaptation and 90 days for data collection. Bulls in the MGAA and HGAA groups had higher DM intake and average daily gain than bulls in the LGAA and control groups. The feed conversion ratio was lowest in MGAA and highest in the control. Bulls receiving 0.9 g/kg DM GAA addition had higher digestibility of DM, organic matter, NDF and ADF than bulls in other groups. The digestibility of CP was higher for HGAA than for LGAA and control. The ruminal pH was lower for MGAA, and the total volatile fatty acid concentration was greater for MGAA and HGAA than for the control. The acetate proportion and acetate-to-propionate ratio were lower for MGAA than for LGAA and control. The propionate proportion was higher for MGAA than for control. Bulls receiving GAA addition showed decreased ruminal ammonia N. Bulls in MGAA and HGAA had higher cellobiase, pectinase and protease activities and Butyrivibrio fibrisolvens, Prevotella ruminicola and Ruminobacter amylophilus populations than bulls in LGAA and control. However, the total protozoan population was lower for MGAA and HGAA than for LGAA and control. The total bacterial and Ruminococcus flavefaciens populations increased with GAA addition. The blood level of creatine was higher for HGAA, and the activity of l-arginine glycine amidine transferase was lower for MGAA and HGAA, than for control. The blood activity of guanidine acetate N-methyltransferase and the level of folate decreased in the GAA addition groups. The results indicated that dietary addition of 0.6 or 0.9 g/kg DM GAA improved growth performance, nutrient digestion and ruminal fermentation in bulls.
Soybean meal is rich in soybean isoflavones, which exhibit antioxidant, anti-inflammatory, antiviral and anticancer functions in humans and animals. This study was conducted to investigate the effects of soybean isoflavones on the growth performance, intestinal morphology and antioxidative properties in pigs. A total of 72 weaned piglets (7.45 ± 0.13 kg; 36 males and 36 females) were allocated into three treatments and fed corn-soybean meal (C-SBM), corn-soy protein concentrate (C-SPC) or C-SPC supplemented with equal levels of the isoflavones found in the C-SBM diet (C-SPC + ISF) for a 72-day trial. Each treatment had six replicates and four piglets per replicate, half male and half female. On day 42, one male pig from each replicate was selected and euthanized to collect intestinal samples. The results showed that compared to pigs fed the C-SPC diet, pigs fed the C-SBM and C-SPC + ISF diets had higher BW on day 72 (P < 0.05); pigs fed the C-SBM diet had significantly higher average daily gain (ADG) during days 14 to 28 (P < 0.05), with C-SPC + ISF being intermediate; pigs fed the C-SBM diet tended to have higher ADG during days 42 to 72 (P = 0.063), while pigs fed the C-SPC + ISF diet had significantly higher ADG during days 42 to 72 (P < 0.05). Moreover, compared to pigs fed the C-SPC diet, pigs fed the C-SBM diet tended to have greater villus height (P = 0.092), while pigs fed the C-SPC + ISF diet had significantly greater villus height (P < 0.05); pigs fed the C-SBM and C-SPC + ISF diets had significantly increased villus height-to-crypt depth ratio (P < 0.05). Compared with the C-SPC diet, dietary C-SPC + ISF tended to increase plasma superoxide dismutase activity on days 28 (P = 0.085) and 42 (P = 0.075) and reduce plasma malondialdehyde (MDA) content on day 42 (P = 0.089), as well as significantly decreased jejunal mucosa MDA content on day 42 (P < 0.05). However, no significant difference in the expression of tight junction genes among the three groups was found (P > 0.05). In conclusion, our results suggest that a long-term exposure to soybean isoflavones enhances the growth performance, protects the intestinal morphology and improves the antioxidative properties in pigs.
The meat quality of chicken is an important factor affecting the consumer’s health. It was hypothesized that n-3 polyunsaturated fatty acid (n-3 PUFA) could be effectively deposited in chicken, by incorporating antioxidation of soybean isoflavone (SI), which led to improved quality of chicken meat for good health of human beings. Effects of partial or complete dietary substitution of lard (LA) with linseed oil (LO), with or without SI on growth performance, biochemical indicators, meat quality, fatty acid profiles, lipid-related health indicators and gene expression of breast muscle were examined in chickens. A total of 900 males were fed a corn–soybean meal diet supplemented with 4% LA, 2% LA + 2% LO and 4% LO and the latter two including 30 mg SI/kg (2% LA + 2% LO + SI and 4% LO + SI) from 29 to 66 days of age; each of the five dietary treatments included six replicates of 30 birds. Compared with the 4% LA diet, dietary 4% LO significantly increased the feed efficiency and had no negative effect on objective indices related to meat quality; LO significantly decreased plasma triglycerides and total cholesterol (TCH); abdominal fat percentage was significantly decreased in birds fed the 4% LO and 4% LO + SI diets. Chickens with LO diets resulted in higher contents of α-linolenic acid (C18:3n-3), EPA (C20:5n-3) and total n-3 PUFA, together with a lower content of palmitic acid (C16:0), lignoceric acid (C24:0), saturated fatty acids and n-6:n-3 ratio in breast muscle compared to 4% LA diet (P < 0.05); they also significantly decreased atherogenic index, thrombogenic index and increased the hypocholesterolemic to hypercholesterolemic ratio. Adding SI to the LO diets enhanced the contents of EPA and DHA (C22:6n-3), plasma total superoxide dismutase, reduced glutathione (GSH)/oxidized glutathione and muscle GSH content, while decreased plasma total triglyceride and TCH and malondialdehyde content in plasma and breast muscle compared to its absence (P < 0.05). Expression in breast muscle of fatty acid desaturase 1 (FADS1), FADS2, elongase 2 (ELOVL2) and ELOVL5 genes were significantly higher with the LO diets including SI than with the 4% LA diet. Significant interactions existed between LO level and inclusion of SI on EPA and TCH contents. These findings indicate that diet supplemented with LO combined with SI is an effective alternative when optimizing the nutritional value of chicken meat for human consumers.
Porphyromonas gingivalis has been linked to the development and progression of oesophageal squamous cell carcinoma (ESCC), and is considered to be a high-risk factor for ESCC. Currently, the commonly used methods for P. gingivalis detection are culture or DNA extraction-based, which are either time and labour intensive especially for high-throughput applications. We aimed to establish and evaluate a rapid and sensitive direct quantitative polymerase chain reaction (qPCR) protocol for the detection of P. gingivalis without DNA extraction which is suitable for large-scale epidemiological studies. Paired gingival swab samples from 192 subjects undergoing general medical examinations were analysed using two direct and one extraction-based qPCR assays for P. gingivalis. Tris-EDTA buffer-based direct qPCR (TE-direct qPCR), lysis-based direct qPCR (lysis-direct qPCR) and DNA extraction-based qPCR (kit-qPCR) were used, respectively, in 192, 132 and 60 of these samples for quantification of P. gingivalis. The sensitivity and specificity of TE-direct qPCR was 95.24% and 100% compared with lysis-direct qPCR, which was 100% and 97.30% when compared with kit-qPCR; TE-direct qPCR had an almost perfect agreement with lysis-direct qPCR (κ = 0.954) and kit-qPCR (κ = 0.965). Moreover, the assay time used for TE-direct qPCR was 1.5 h. In conclusion, the TE-direct qPCR assay is a simple and efficient method for the quantification of oral P. gingivalis and showed high sensitivity and specificity compared with routine qPCR.
Reducing dietary CP content is an effective approach to reduce animal nitrogen excretion and save protein feed resources. However, it is not clear how reducing dietary CP content affects the nutrient digestion and absorption in the gut of ruminants, therefore it is difficult to accurately determine how much reduction in dietary CP content is appropriate. This study was conducted to investigate the effects of reduced dietary CP content on N balance, intestinal nutrient digestion and absorption, and rumen microbiota in growing goats. To determine N balance, 18 growing wether goats (25.0 ± 0.5 kg) were randomly assigned to one of three diets: 13.0% (control), 11.5% and 10.0% CP. Another 18 growing wether goats (25.0 ± 0.5 kg) were surgically fitted with ruminal, proximate duodenal, and terminal ileal fistulae and were randomly assigned to one of the three diets to investigate intestinal amino acid (AA) absorption and rumen microbiota. The results showed that fecal and urinary N excretion of goats fed diets containing 11.5% and 10.0% CP were lower than those of goats fed the control diet (P < 0.05). When compared with goats fed the control diet, N retention was decreased and apparent N digestibility in the entire gastrointestinal tract was increased in goats fed the 10% CP diet (P < 0.05). When compared with goats fed the control diet, the duodenal flow of lysine, tryptophan and phenylalanine was decreased in goats fed the 11.5% CP diet (P < 0.05) and that of lysine, methionine, tryptophan, phenylalanine, leucine, glutamic acid, tyrosine, essential AAs (EAAs) and total AAs (TAAs) was decreased in goats fed the 10.0% CP diet (P < 0.05). When compared with goats fed the control diet, the apparent absorption of TAAs in the small intestine was increased in goats fed the 11.5% CP diet (P < 0.05) and that of isoleucine, serine, cysteine, EAAs, non-essential AAs, and TAAs in the small intestine was increased in goats fed the 10.0% CP diet (P < 0.05). When compared with goats fed the control diet, the relative richness of Bacteroidetes and Fibrobacteres was increased and that of Proteobacteria and Synergistetes was decreased in the rumen of goats fed a diet with 10.0% CP. In conclusion, reducing dietary CP content reduced N excretion and increased nutrient utilization by improving rumen fermentation, enhancing nutrient digestion and absorption, and altering rumen microbiota in growing goats.
White matter abnormalities have been repeatedly reported in both schizophrenia and bipolar disorder (BD) diseases from diffusion tensor imaging (DTI) studies respectively, while the empirical evidences about the diagnostic specificity of white matter abnormalities in these disorders are still limited.
Objectives
25 patients with paranoid schizophrenia and 18 patients with bipolar mania were recruited from the in-patient unit of the Mental Health Centre, West China Hospital, China.
Patients were diagnosed according to the criteria of Diagnostic and Statistical Manual of Mental Disorders-Version IV (DSM- IV). 30 healthy controls were recruited from the community by means of leaflets distributed throughout Chengdu city.
Aims
This study sought to investigate the alterations in fractional anisotropy (FA) in white matter throughout the entire brain of patients from Chengdu, China with paranoid schizophrenia and bipolar mania.
Methods
Diffusion tensor imaging (DTI) was used to assess white matter integrity in patients with paranoid schizophrenia and bipolar mania, as well as in normal controls. The differences in FA were measured by use of voxel-based analysis.
Results
Reduced FA was found in the left posterior corona radiate (PCR) in patients with bipolar mania and paranoid schizophrenia compared to the controls. Patients with bipolar mania also showed a significant reduction in FA in right posterior corona radiate and in right anterior thalamic radiation (ATR).
Conclusions
Common abnormalities in the left PCR might imply an overlap in white matter pathology of both diseases and might be related to the shared risk factors for both disorders.
Ketamine exerts fast acting, robust, and lasting antidepressant effects in a sub-anesthetic dose, however, the underlying mechanisms are still not fully elucidated. Recent studies have suggested that ketamine's antidepressant effects are probably attributed to the activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. The present study aimed to observe the effects of AMPA receptor modulators on mammalian target of rapamycin (mTOR) and brain-derived neurotrophic factor (BDNF) expression during the procedure of ketamine exerting antidepressant effects. Therefore, we pretreated rats with NBQX, an AMPA receptor antagonist, or CX546, an AMPA receptor agonist, and subsequently observed the immobility time during the forced swimming test (FST) and the hippocampal and prefrontal cortical levels of mTOR and BDNF. The results showed ketamine decreased the immobility time of rats during the FST and increased the hippocampal and prefrontal cortical mTOR and BDNF. NBQX pretreatment significantly increased the immobility time and decreased the levels of mTOR and BDNF when compared with vehicle 1 (DMSO) pretreatment. CX546 pretreatment significantly decreased the immobility time and increased the levels of mTOR and BDNF when compared with vehicle 2 (DMSO + ethanol) pretreatment. Our results suggest ketamine-induced antidepressant effects are associated with AMPA receptors-mediated upregulation of mTOR and BDNF in rat hippocampus and prefrontal cortex.
Studies revealed that prenatal stress (PS) may increase the vulnerability to depression in their offspring, and ERK-CREB signal system might play a role in its mechanism.
Objectives and aims
The present study investigated the effect of MK-801 on depressive-like behavior and its impacts on ERK2, CREB, Bcl-2 mRNA expression in PS female rat offspring.
Methods
The pregnant rats were randomly divided into three groups, the control group (Con) was left undisturbed, the PS-saline group (PS-saline) and the PS-MK-801 group (PS-MK-801) were subjected to restraint stress on days 14–20 of pregnancy three times daily for 45 min, and received an i.p. administration of saline or MK-801(sigma, 0.2 mg/kg) 30 min before the first stress respectively. Forced swimming test was undertaken to assess depressive-like behavior in one month female offspring. ERK2, CREB, Bcl-2 mRNA in the hippocampus, frontal cortex, and striatum were detected by RT-PCR.
Results
PS-saline spent significantly more immobile time compared to Con and PS-MK-801 (P < 0.05). ERK2 and CREB mRNA expression in hippocampus and frontal cortex was significantly decreased in PS-saline compared to Con and PS-MK-801 (P < 0.05), while in striatum CREB mRNA expression in PS-saline was lower than Con (P < 0.05). Bcl-2 mRNA expression in hippocampus and striatum was significantly decreased in PS-saline (P < 0.05), and in frontal cortex, its expression was significantly lower in PS-saline and PS-MK-801 (P < 0.05).
Conclusions
PS may suppress ERK-CREB signal pathway in female offspring rats, which could be partly prevented by MK- 801. (Supported by National Natural Science Foundation of China, No: 30970952).
The aim of this study is to explore the different patterns of self-management among people with schizophrenia, in order to help professionals provide more effective support tailored to different characteristics and needs of clients.
Methods
Totally 214 clients with schizophrenia living in 8 communities of Beijing, China were assessed, using Chinese version of Schizophrenia Self-Management Instrument Scale (SSMIS). Cluster analysis was performed to categorize clients based on their scores in 6 self-management areas.
Results
K-means cluster analysis revealed four different self-management patterns. 'Self-confident and Autonomous' (n=63), clients actively participated in self-management and had a certain skills. 'Overconfident' (n=94), these clients had high self-efficacy and did well in medication compliance, while not in other areas. In their eyes, this was enough and they were experienced enough. 'Passive and Compliant' (n=51), clients often relied on their caregivers to manage the disease, yet did worse either in dimensions of symptom management or using health resource and support. 'No involvement' (n=6), clients' self-efficacy was low. They rarely participated in self-management and did worse in every self-management areas. Four pattern clients had significant differences in educational level, work status and financial burden (P<0.05).
Conclusion
There are subgroups of schizophrenic people with unique multidimensional patterns of self-management behaviors. This may help health professionals provide more customized support to improve clients' health status.
Studies have convinced that the rodents' exposure to prenatal stress (PNS) may induce depression and anxiety to their offspring. We focused on the glutamatergic system to explore the mechanisms.
Objectives and aims:
By examining EAAT2,EAAT3 (Excitatory Amino Acid Transporter 2,3), which are the only substances to inactivate glutamate in nervous system, we explored the effect of PNS on glutamatergic system.
Methods:
Pregnant rats were assigned to Control group (CON), Middle period of PNS group (MPS) and Late period of PNS group (LPS). MPS and LPS rats were exposed to restraint stress on days 7–13, 14–20 of pregnancy three times daily for 45 min. EAAT2 and EAAT3 mRNA expression in the hippocampus, frontal cortex, and striatum of one month rat offspring were checked by RT-PCR.
Results:
For the female offspring, EAAT2 mRNA expression of hippocampus in LPS and MPS was significantly lower compared to CON(P = 0.008,p = 0.003); EAAT2 and EAAT3 mRNA expression of frontal cortex in LPS were significantly lower than CON (p = 0.003,p = 0.013). for the male offspring, EAAT2 and EAAT3 mRNA expression of hippocampus in LPS and MPS were significantly lower (p = 0.005, p = 0.05); EAAT2 mRNA expression of frontal cortex was significantly lower in LPS (p = 0.022); EAAT2 mRNA in LPS group and MPS were significantly lower (p = 0.009, p = 0.014), and EAAT3 mRNA expression of striatum in MPS was significantly lower (p = 0.049).
Conclusions:
Decreased EAAT2 and EAAT3 of PNS may explain the increase of glutamate in synaptic cleft and its downstream excitotoxicity. (Supported by National Natural Science Foundation of China, No: 30970952)
Combining different swine populations in genomic prediction can be an important tool, leading to an increased accuracy of genomic prediction using single nucleotide polymorphism (SNP) chip data compared with within-population genomic. However, the expected higher accuracy of multi-population genomic prediction has not been realized. This may be due to an inconsistent linkage disequilibrium (LD) between SNPs and quantitative trait loci (QTL) across populations, and the weak genetic relationships across populations. In this study, we determined the impact of different genomic relationship matrices, SNP density and pre-selected variants on prediction accuracy using a combined Yorkshire pig population. Our objective was to provide useful strategies for improving the accuracy of genomic prediction within a combined population. Results showed that the accuracy of genomic best linear unbiased prediction (GBLUP) using imputed whole-genome sequencing (WGS) data in the combined population was always higher than that within populations. Furthermore, the use of imputed WGS data always resulted in a higher accuracy of GBLUP than the use of 80K chip data for the combined population. Additionally, the accuracy of GBLUP with a non-linear genomic relationship matrix was markedly increased (0.87% to 15.17% for 80K chip data, and 0.43% to 4.01% for imputed WGS data) compared with that obtained with a linear genomic relationship matrix, except for the prediction of XD population in the combined population using imputed WGS data. More importantly, the application of pre-selected variants based on fixation index (Fst) scores improved the accuracy of multi-population genomic prediction, especially for 80K chip data. For BLUP|GA (BLUP approach given the genetic architecture), the use of a linear method with an appropriate weight to build a weight-relatedness matrix led to a higher prediction accuracy compared with the use of only pre-selected SNPs for genomic evaluations, especially for the total number of piglets born. However, for the non-linear method, BLUP|GA showed only a small increase or even a decrease in prediction accuracy compared with the use of only pre-selected SNPs. Overall, the best genomic evaluation strategy for reproduction-related traits for a combined population was found to be GBLUP performed with a non-linear genomic relationship matrix using variants pre-selected from the 80K chip data based on Fst scores.
Cytomegalovirus (CMV) enters latency after primary infection and can reactivate periodically with virus excreted in body fluids which can be called shedding. CMV shedding during the early stage of pregnancy is associated with adverse pregnancy outcome. The shedding pattern in healthy seropositive women who plan to have babies has not been well characterised. Vaginal swabs, urine and blood were collected from 1262 CMV IgG-positive women who intended to have babies and tested for CMV DNA by fluorogenic quantitative PCR method. Serum IgM was also detected. The association between sociodemographic characteristics and CMV shedding prevalence was analysed. Among 1262 seropositive women, 12.8% (161/1262) were detected CMV DNA positive in at least one body fluid. CMV DNA was more frequently detected in vaginal secretion (10.5%) than in urine (3.2%) and blood (0.6%) also with higher viral loads (P < 0.00). CMV shedding was more likely detected in IgM-positive women than IgM-negative women (29.5% (13/44) vs. 12.2% (148/1218); OR 3.03, 95% CI 1.55–5.93; P = 0.001). CMV shedding in vaginal secretion was highly correlated with shedding in urine, the immune state of IgM, the adverse pregnant history and younger age. CMV shedding was more commonly detected in vaginal secretion than in urine or blood with higher viral loads among healthy seropositive women of reproductive age. Further studies are needed to figure out whether the shedding is occasional or continuous and whether it is associated with adverse pregnancy outcomes.
The hydroelastic waves in a channel covered by an ice sheet, without or with crack and subject to various edge constraints at channel banks, are investigated based on the linearized velocity potential theory for the fluid domain and the thin-plate elastic theory for the ice sheet. An effective analytical solution procedure is developed through expanding the velocity potential and the fourth derivative of the ice deflection to a series of cosine functions with unknown coefficients. The latter are integrated to obtain the expression for the deflection, which involves four constants. The procedure is then extended to the case with a longitudinal crack in the ice sheet by using the Dirac delta function and its derivatives at the crack in the dynamic equation, with unknown jumps of deflection and slope at the crack. Conditions at the edges and crack are then imposed, from which a system of linear equations for the unknowns is established. From this, the dispersion relation between the wave frequency and wavenumber is found, as well as the natural frequency of the channel. Extensive results are then provided for wave celerity, wave profiles and strain in the ice sheet. In-depth discussions are made on the effects of the edge condition, and the crack.
The fatty acid composition of chicken’s meat is largely influenced by dietary lipids, which are often used as supplements to increase dietary caloric density. The underlying key metabolites and pathways influenced by dietary oils remain poorly known in chickens. The objective of this study was to explore the underlying metabolic mechanisms of how diets supplemented with mixed or a single oil with distinct fatty acid composition influence the fatty acid profile in breast muscle of Qingyuan chickens. Birds were fed a corn-soybean meal diet supplemented with either soybean oil (control, CON) or equal amounts of mixed edible oils (MEO; soybean oil : lard : fish oil : coconut oil = 1 : 1 : 0.5 : 0.5) from 1 to 120 days of age. Growth performance and fatty acid composition of muscle lipids were analysed. LC-MS was applied to investigate the effects of CON v. MEO diets on lipid-related metabolites in the muscle of chickens at day 120. Compared with the CON diet, chickens fed the MEO diet had a lower feed conversion ratio (P < 0.05), higher proportions of lauric acid (C12:0), myristic acid (C14:0), palmitoleic acid (C16:1n-7), oleic acid (C18:1n-9), EPA (C20:5n-3) and DHA (C22:6n-3), and a lower linoleic acid (C18:2n-6) content in breast muscle (P < 0.05). Muscle metabolome profiling showed that the most differentially abundant metabolites are phospholipids, including phosphatidylcholines (PC) and phosphatidylethanolamines (PE), which enriched the glycerophospholipid metabolism (P < 0.05). These key differentially abundant metabolites – PC (14:0/20:4), PC (18:1/14:1), PC (18:0/14:1), PC (18:0/18:4), PC (20:0/18:4), PE (22:0/P-16:0), PE (24:0/20:5), PE (22:2/P-18:1), PE (24:0/18:4) – were closely associated with the contents of C12:0, C14:0, DHA and C18:2n-6 in muscle lipids (P < 0.05). The content of glutathione metabolite was higher with MEO than CON diet (P < 0.05). Based on these results, it can be concluded that the diet supplemented with MEO reduced the feed conversion ratio, enriched the content of n-3 fatty acids and modified the related metabolites (including PC, PE and glutathione) in breast muscle of chickens.
Coronavirus disease 2019 (COVID-19) pandemic is a major public health concern all over the world. Little is known about the impact of COVID-19 pandemic on mental health in the general population. This study aimed to assess the mental health problems and associated factors among a large sample of college students during the COVID-19 outbreak in China.
Methods
This cross-sectional and nation-wide survey of college students was conducted in China from 3 to 10 February 2020. A self-administered questionnaire was used to assess psychosocial factors, COVID-19 epidemic related factors and mental health problems. Acute stress, depressive and anxiety symptoms were measured by the Chinese versions of the impact of event scale-6, Patient Health Questionnaire-9 and Generalized Anxiety Disorder-7, respectively. Univariate and hierarchical logistic regression analyses were performed to examine factors associated with mental health problems.
Results
Among 821 218 students who participated in the survey, 746 217 (90.9%) were included for the analysis. In total, 414 604 (55.6%) of the students were female. About 45% of the participants had mental health problems. The prevalence rates of probable acute stress, depressive and anxiety symptoms were 34.9%, 21.1% and 11.0%, respectively. COVID-19 epidemic factors that were associated with increased risk of mental health problems were having relatives or friends being infected (adjusted odds ratio = 1.72–2.33). Students with exposure to media coverage of the COVID-19 ≥3 h/day were 2.13 times more likely than students with media exposure <1 h/day to have acute stress symptoms. Individuals with low perceived social support were 4.84–5.98 times more likely than individuals with high perceived social support to have anxiety and depressive symptoms. In addition, senior year and prior mental health problems were also significantly associated with anxiety or/and depressive symptoms.
Conclusions
In this large-scale survey of college students in China, acute stress, anxiety and depressive symptoms are prevalent during the COVID-19 pandemic. Multiple epidemic and psychosocial factors, such as family members being infected, massive media exposure, low social support, senior year and prior mental health problems were associated with increased risk of mental health problems. Psychosocial support and mental health services should be provided to those students at risk.
The small intestine is an important digestive organ and plays a vital role in the life of a pig. We tested the hypothesis that the length of the small intestine is related to growth performance and intestinal functions of piglets. A total of 60 piglets (Duroc × Landrace × Yorkshire), weaned at day 21, were fed an identical diet during a 28-day trial. At the end of the study, all piglets were sacrificed, dissected and grouped according to small intestine lengths (SILs), either short small intestine (SSI), middle small intestine (MSI) or long small intestine (LSI), respectively. Positive relationships between SIL and BW, average daily gain (ADG), average daily feed intake (ADFI) and gain-to-feed ratios (G : F) were observed. Final BW, ADG, ADFI and G : F significantly increased (P < 0.05) in MSI and LSI piglets compared with SSI piglets. Short small intestine and MSI had greater jejunal mucosa sucrase and alkaline phosphatase activities (P < 0.05) than LSI piglets. The mRNA level of solute carrier family 2 member 2 (Slc2a2) in the jejunal mucosa of SSI piglets was the greatest. The MSI piglets had a greater (P < 0.05) ileal villus height than other piglets and greater (P < 0.05) villus height-to-crypt depth ratios than LSI piglets. However, the LSI piglets had a greater (P < 0.05) ileal crypt depth than SSI piglets. No significant differences in duodenal, jejunal, caecal and colonic morphologies were detected among the groups. Moreover, luminal acetate, propionate, butyrate and total short-chain fatty acid contents were greater (P < 0.05) in SSI and MSI piglets than those in LSI piglets. In addition, there was greater serum glucose concentration in MSI piglets than other piglets. Serum albumin concentration in SSI piglets was the lowest. In conclusion, these results indicate that SIL was significantly positively associated with growth performance, and in terms of intestinal morphology and mucosal digestive enzyme activity, the piglets with a medium length of small intestine have better digestion and absorption properties.
Small intestinal epithelium homeostasis involves four principal cell types: enterocytes, goblet, enteroendocrine and Paneth cells. Epidermal growth factor (EGF) has been shown to affect enterocyte differentiation. This study determined the effect of dietary EGF on goblet, enteroendocrine and Paneth cell differentiation in piglet small intestine and potential mechanisms. Forty-two weaned piglets were used in a 2 × 3 factorial design; the major factors were time post-weaning (days 7 and 14) and dietary treatment (0, 200 or 400 µg/kg EGF supplementation). The numbers of goblet and enteroendocrine cells were generally greater with the increase in time post-weaning. Moreover, the supplementation of 200 µg/kg EGF increased (P < 0.01) the number of goblet and enteroendocrine cells in villus and crypt of the piglet small intestine as compared with the control. Dietary supplementation with 200 µg/kg EGF enhanced (P < 0.05) abundances of differentiation-related genes atonal homologue 1, mucin 2 and intestinal trefoil factor 3 messenger RNA (mRNA) as compared with the control. Piglets fed 200 or 400 µg/kg EGF diet had increased (P < 0.05) abundances of growth factor-independent 1, SAM pointed domain containing ETS transcription factor and pancreatic and duodenal homeobox 1 mRNA, but decreased the abundance (P < 0.01) of E74 like ETS transcription factor 3 mRNA as compared with the control. Animals receiving 400 µg/kg EGF diets had enhanced (P < 0.05) abundances of neurogenin3 and SRY-box containing gene 9 mRNA as compared with the control. The mRNA abundance and protein expression of lysozyme, a marker of Paneth cell, were also increased (P < 0.05) in those animals. As compared with the control, dietary supplementation with 200 µg/kg EGF increased the abundance of EGF receptor mRNA and the ratio of non-phospho(p)-β-catenin/β-catenin (P < 0.05) in villus epithelial cells at days 7 and 14. This ratio in crypt epithelial cells was higher (P < 0.05) on the both 200 and 400 µg/kg EGF groups during the same period. Our results demonstrated that dietary EGF stimulated goblet, enteroendocrine and Paneth cell differentiation in piglets during the post-weaning period, partly through EGFR and Wnt/β-catenin signalling.