We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This study aimed to evaluate the benefits of betahistine or vestibular rehabilitation (Tetrax biofeedback) on the quality of life and fall risk in patients with Ménière's disease.
Methods
Sixty-six patients with Ménière's disease were randomly divided into three groups: betahistine, Tetrax and control groups. Patients’ Dizziness Handicap Index and Tetrax fall index scores were obtained before and after treatment.
Results
Patients in the betahistine and Tetrax groups showed significant improvements in Dizziness Handicap Index and fall index scores after treatment versus before treatment (p < 0.05). The improvements in the Tetrax group were significantly greater than those in the betahistine group (p < 0.05).
Conclusions
Betahistine and vestibular rehabilitation (Tetrax biofeedback) improve the quality of life and reduce the risk of falling in patients with Ménière's disease. Vestibular rehabilitation (Tetrax biofeedback) is an effective management method for Ménière's disease.
Gravitational waves from coalescing neutron stars encode information about nuclear matter at extreme densities, inaccessible by laboratory experiments. The late inspiral is influenced by the presence of tides, which depend on the neutron star equation of state. Neutron star mergers are expected to often produce rapidly rotating remnant neutron stars that emit gravitational waves. These will provide clues to the extremely hot post-merger environment. This signature of nuclear matter in gravitational waves contains most information in the 2–4 kHz frequency band, which is outside of the most sensitive band of current detectors. We present the design concept and science case for a Neutron Star Extreme Matter Observatory (NEMO): a gravitational-wave interferometer optimised to study nuclear physics with merging neutron stars. The concept uses high-circulating laser power, quantum squeezing, and a detector topology specifically designed to achieve the high-frequency sensitivity necessary to probe nuclear matter using gravitational waves. Above 1 kHz, the proposed strain sensitivity is comparable to full third-generation detectors at a fraction of the cost. Such sensitivity changes expected event rates for detection of post-merger remnants from approximately one per few decades with two A+ detectors to a few per year and potentially allow for the first gravitational-wave observations of supernovae, isolated neutron stars, and other exotica.
A disruption database characterizing the current quench of disruptions with ITER-like tungsten divertor has been developed on EAST. It provides a large number of plasma parameters describing the predisruptive plasma, current quench time, eddy current, and mitigation by massive impurity injection, which shows that the current quench time strongly depends on magnetic energy and post-disruption electron temperature. Further, the energy balance and magnetic energy dissipation during the current quench phase has been well analysed. Magnetic energy is also demonstrated to be dissipated mainly by ohmic reheating and inductive coupling, and both of the two channels have great effects on current quench time. Also, massive gas injection is an efficient method to speed up the current quench and increase the fraction of impurity radiation.
A study of low-speed streaks (LSSs) embedded in the near-wall region of a turbulent boundary layer is performed using selective visualization and analysis of time-resolved tomographic particle image velocimetry (tomo-PIV). First, a three-dimensional velocity field database is acquired using time-resolved tomo-PIV for an early turbulent boundary layer. Second, detailed time-line flow patterns are obtained from the low-order reconstructed database using ‘tomographic visualizations’ by Lagrangian tracking. These time-line patterns compare remarkably well with previously observed patterns using hydrogen bubble flow visualization, and allow local identification of LSSs within the database. Third, the flow behaviour in proximity to selected LSSs is examined at varying wall distances (
$10 < y^+ < 100$
) and assessed using time-line and material surface evolution, to reveal the flow structure and evolution of a streak, and the flow structure evolving from streak development. It is observed that three-dimensional wave behaviour of the detected LSSs appears to develop into associated near-wall vortex flow structures, in a process somewhat similar to transitional boundary layer behaviour. Fourth, the presence of Lagrangian coherent structures is assessed in proximity to the LSSs using a Lagrangian-averaged vorticity deviation process. It is observed that quasi-streamwise vortices, adjacent to the sides of the streak-associated three-dimensional wave, precipitate an interaction with the streak. Finally, a hypothesis based on the behaviour of soliton-like coherent structures is made which explains the process of LSS formation, bursting behaviour and the generation of hairpin vortices. Comparison with other models is also discussed.
Postoperative nausea and vomiting (PONV) is the most common postoperative complication after gynecological laparoscopic surgery. It is unknown whether the occurrence of PONV is associated with the preoperative psychological status.
Objectives:
To explore the effects of preoperative psychological status on the incidence of PONV following gynecological laparoscopic surgery.
Aims:
To analyze the possible risk factors in order to prevent and treat PONV after gynecological laparoscopic surgery.
Methods:
101 cases patients who underwent gynecological laparoscopic surgery were enrolled. Self-rating anxiety scale (SAS) and self-rating depression scale (SDS) were used to assess the preoperative psychological state. Visual analog scale nausea (NVAS) was used to evaluate the occurrence of PONY within the postoperative 24 hours.
Results:
101 patients completed NVAS and 72 patients completed SAS and SDS. The incidence of PONV was 45.5%. The standard score of SAS (49.14±8.01) in PONV group was significantly higher than that in Non-PONV group (44.54±7.58) t=2.505, P < 0.05. The ratio of preoperative anxiety patients(SAS≥50) in PONV group(57%) was higher than that in Non-PONV group (30%) (χ2=5.513, P < 0.05). It showed that the occurrence of PONV was positively correlated with preoperative anxiety (r=0.277, P < 0.05). There was no difference in the scores of SDS between two groups. No correlation was found between PONV and preoperative depression.
Conclusions:
Higher level of anxiety before surgery may increase the risk of PONV. The patients undergoing gynecological laparoscopic surgery should reduce the level of anxiety with appropriate psychological counseling or prophylactic anti-anxiety drugs.
The aim of this study was to develop and externally validate a simple-to-use nomogram for predicting the survival of hospitalised human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) patients (hospitalised person living with HIV/AIDS (PLWHAs)). Hospitalised PLWHAs (n = 3724) between January 2012 and December 2014 were enrolled in the training cohort. HIV-infected inpatients (n = 1987) admitted in 2015 were included as the external-validation cohort. The least absolute shrinkage and selection operator method was used to perform data dimension reduction and select the optimal predictors. The nomogram incorporated 11 independent predictors, including occupation, antiretroviral therapy, pneumonia, tuberculosis, Talaromyces marneffei, hypertension, septicemia, anaemia, respiratory failure, hypoproteinemia and electrolyte disturbances. The Likelihood χ2 statistic of the model was 516.30 (P = 0.000). Integrated Brier Score was 0.076 and Brier scores of the nomogram at the 10-day and 20-day time points were 0.046 and 0.071, respectively. The area under the curves for receiver operating characteristic were 0.819 and 0.828, and precision-recall curves were 0.242 and 0.378 at two time points. Calibration plots and decision curve analysis in the two sets showed good performance and a high net benefit of nomogram. In conclusion, the nomogram developed in the current study has relatively high calibration and is clinically useful. It provides a convenient and useful tool for timely clinical decision-making and the risk management of hospitalised PLWHAs.
Chlamydia trachomatis (CT) infection has been a major public health threat globally. Monitoring and prediction of CT epidemic status and trends are important for programme planning, allocating resources and assessing impact; however, such activities are limited in China. In this study, we aimed to apply a seasonal autoregressive integrated moving average (SARIMA) model to predict the incidence of CT infection in Shenzhen city, China. The monthly incidence of CT between January 2008 and June 2019 in Shenzhen was used to fit and validate the SARIMA model. A seasonal fluctuation and a slightly increasing pattern of a long-term trend were revealed in the time series of CT incidence. The monthly CT incidence ranged from 4.80/100 000 to 21.56/100 000. The mean absolute percentage error value of the optimal model was 8.08%. The SARIMA model could be applied to effectively predict the short-term CT incidence in Shenzhen and provide support for the development of interventions for disease control and prevention.
The beginning of laminar–turbulent transition is usually associated with a wave-like disturbance, but its evolution and role in precipitating the development of other flow structures are not well understood from a structure-based view. Nonlinear parabolized stability equations (NPSE) were solved numerically to simulate the transition of K-regime, N-regime and O-regime. However, only the K-regime transition was examined experimentally using both hydrogen bubble visualization and time-resolved tomographic particle image velocimetry (tomo-PIV). Based on the ‘NPSE visualization’ and ‘tomographic visualization’, at least four common characteristics of the generic transition process were identified: (i) inflectional regions representing high-shear layers (HSL) that develop in vertical velocity profiles, accompanied by ejection–sweep behaviours; (ii) low-speed streak (LSS) patterns, manifested in horizontal timelines, that seem to consist of several three-dimensional (3-D) waves; (iii) a warped wave front (WWF) pattern, displaying multiple folding processes, which develops adjacent to the LSS in the near-wall region, prior to the appearance of 𝛬-vortices; (iv) a coherent 3-D wave front, similar to a soliton, in the upper boundary layer, accompanied by regions of depression along the flanks of the wave. It was determined that the amplification and lift-up of a 3-D wave causes the development of the HSL, WWF and multiple folding behaviour of material surfaces, that all contribute to the development of a 𝛬-vortex. The amplified 3-D wave is hypothesized as a soliton-like coherent structure. Based on our results, a path to transition is proposed, which hypothesizes the function of the WWF in boundary-layer transition.
Suicide emerges as a threat to national health of USA with Whites being at extra risk. More information is needed regarding the increased suicide among Whites to improve national suicide prevention strategies. This study aims to characterise the age pattern of suicide among Whites by suicide methods adjusting for time period and birth cohort.
Methods
Suicide mortality data by age of 15–84 years during 1999–2017 were derived from the Wide-Ranging Online Data for Epidemiological Research, prepared by US Center for Disease Control and Prevention. Mortality data for three common suicide methods, firearms, suffocation and poisoning were analysed using the age–period–cohort (APC) model. Period–cohort adjusted mortality rates by age were estimated based on results from APC modelling.
Results
Period–cohort adjusted rates indicated that the overall age pattern for males contained five phases, including three increasing phases (ages 15–20, 30–50 and 65+), connected by two declining phases (ages 20–30 and 50–65); and the age pattern for females was a parabolic with an increasing phase from 15 years of age up to 50, followed by a declining phase after age 50. Furthermore, the age pattern for different suicide methods differed substantially for males, but did not for females. Among males, suicide by firearms contained two rapid increasing phases, one during adolescence and another in older ages; suicide by suffocation showed a high plateau across an age span from 20 to 55 years; and suicide by poisoning followed a parabolic, increasing by age up to 45 before it declined. Age patterns revealed by the unadjusted crude rates were biased because of significant linear period effect and W-shaped cohort effect.
Conclusions
This study is the first to quantify the age patterns of suicide by different methods for US Whites using period–cohort adjusted rates. Study findings provide valid evidence supporting precision interventions to reduce the extra suicide mortality among Whites by targeting specific age ranges with different suicide methods.
Experiments are presented on the deformation of free surface induced by water exit of axisymmetric bodies, particular at the moment before body detaching from water. A set of experimental apparatus is designed to provide driving force for the bodies. A high-speed camera is adopted to capture the motion and deformation of the free surface. Bodies of various shapes, including a stretched spheroid, a sphere, a circular cone and a combination of cylinder and circular cone, are lifted out of water with different velocities, by using a straight rod attached on the top of models. It is found that free-surface deformation is affected by the moving velocity a lot. Three wake flow or free-surface spike patterns are generated corresponding to different velocities. When the velocity is larger than a critical velocity, cavitation incepts and bubble is entrapped inside the water spike, which changes the flow pattern and shape of the spike. It is aimed to explore the spike phenomenon of free surface and explain the reasons behind it.
To compare the epidemiologic features (e.g. settings and transmission mode) and patient clinical characteristics associated with outbreaks of different norovirus (Nov) strains, we retrospectively analysed data of Nov outbreaks occurring in Guangzhou, China from 2012 to 2018. The results suggested that outbreaks of Nov GII.2, GII.17 and GII.4 Sydney exhibited different outbreak settings, transmission modes and symptoms. GII.2 outbreaks mainly occurred in kindergartens, elementary and high schools and were transmitted mainly through person-to-person contact. By contrast, GII.4 Sydney outbreaks frequently occurred in colleges and were primarily associated with foodborne transmission. Cases from GII.2 and GII.17 outbreaks reported vomiting more frequently than those from outbreaks associated with GII.4 Sydney.
A viscous damping model is proposed based on a simplified equation of fluid motion in a moonpool or the narrow gap formed by two fixed boxes. The model takes into account the damping induced by both flow separation and wall friction through two damping coefficients, namely, the local and friction loss coefficients. The local loss coefficient is determined through specifically designed physical model tests in this work, and the friction loss coefficient is estimated through an empirical formula found in the literature. The viscous damping model is implemented in the dynamic free-surface boundary condition in the gap of a modified potential flow model. The modified potential flow model is then applied to simulate the wave-induced fluid responses in a narrow gap formed by two fixed boxes and in a moonpool for which experimental data are available. The modified potential flow model with the proposed viscous damping model works well in capturing both the resonant amplitude and frequency under a wide range of damping conditions.
This study investigates the stability and transition of Görtler vortices in a hypersonic boundary layer using linear stability theory and direct numerical simulations. In the simulations, Görtler vortices are separately excited by wall blowing and suction with spanwise wavelengths of 3, 6 and 9 mm. In addition to primary streaks with the same wavelength as the blowing and suction, secondary streaks with half the wavelength also emerge in the 6 and 9 mm cases. The streaks develop into mushroom structures before breaking down. The breakdown processes of the three cases are dominated by a sinuous-mode instability, a varicose-mode instability and a combination of the two, respectively. Both fundamental and subharmonic instabilities are relevant in all cases. Multiple modes are identified in the secondary-instability stage, some of which originate from the primary instabilities (first and second Mack modes). We demonstrate that the first Mack mode can be destabilized to either a varicose-mode or sinuous-mode streak instability depending on its frequency and wavelength, whereas the second Mack mode undergoes a stabilizing stage before turning into a varicose mode in the 6 and 9 mm cases. An energy analysis reveals the stabilizing and destabilizing mechanisms of the primary instabilities under the influence of Görtler vortices, highlighting the role played by the spanwise production based on the spanwise gradient of the streamwise velocity in both varicose and sinuous modes. The effects introduced by the secondary streaks are examined by filtering the secondary streaks in two new simulations with nominally identical conditions to those of the 6 and 9 mm cases. Remarkably, the secondary streaks can destabilize the Görtler vortices, therefore advancing the transition. The stability theory results are in good agreement with those from direct numerical simulations.
The oriental fruit moth, Grapholita molesta, is an important pest in many commercial orchards including apple, pear and peach orchards, and responsible for substantial economic losses every year. To help in attaining a comprehensive and thorough understanding of the ecological tolerances of G. molesta, we collected life history data of individuals reared on apples under different constant temperature regimes and compared the data with moths reared under a variable outdoor temperature environment. Because G. molesta individuals reared at a constant 25°C had the heaviest pupal weight, the highest survival rate from egg to adult, highest finite rate of increase, and greatest fecundity, 25°C was considered as the optimum developmental temperature. The G. molesta population reared at a constant 31°C had the shortest development time, lowest survival rate and fecundity, resulting in population parameters of r < 0, λ < 1, lead to negative population growth. The population parameters r and λ reared under fluctuating temperature were higher than that reared under constant temperatures, the mean generation time (T) was shorter than it was in all of the constant temperatures treatments. This would imply that the outdoor G. molesta population would have a higher population growth potential and faster growth rate than indoor populations raised at constant temperatures. G. molesta moths reared under fluctuating temperature also had a higher fertility than moths reared under constant temperatures (except at 25°C). Our findings indicated that the population raised under outdoor fluctuating temperature conditions had strong environment adaptiveness.
In the present study, calcium propionate (CaP) was used as feed additive in the diet of calves to investigate their effects on rumen fermentation and the development of rumen epithelium in calves. To elucidate the mechanism in which CaP improves development of calf rumen epithelium via stimulating the messenger RNA (mRNA) expression of G protein-coupled receptors, a total of 54 male Jersey calves (age=7±1 days, BW=23.1±1.2 kg) were randomly divided into three treatment groups: control without CaP supplementation (Con), 5% CaP supplementation (5% CaP) and 10% CaP supplementation (10% CaP). The experiment lasted 160 days and was divided into three feeding stages: Stage 1 (days 0 to 30), Stage 2 (days 31 to 90) and Stage 3 (days 91 to 160). Calcium propionate supplementation percentages were calculated on a dry matter basis. In total, six calves from each group were randomly selected and slaughtered on days 30, 90 and 160 at the conclusion of each experimental feeding stage. Rumen fermentation was improved with increasing concentration of CaP supplementation in calves through the first 30 days (Stage 1). No effects of CaP supplementation were observed on rumen fermentation in calves during Stage 2 (days 31 to 90). Supplementation with 5% CaP increased propionate concentration, but not acetate and butyrate in calves during Stage 3 (days 91 to 160). The rumen papillae length of calves in the 5% CaP supplementation group was greater than that of Con groups in calves after 160 days feeding. The mRNA expression of G protein-coupled receptor 41 (GPR41) and GPR43 supplemented with 5% CaP were greater than the control group and 10% CaP group in feeding 160 days calves. 5% CaP supplementation increased the mRNA expression of cyclin D1, whereas did not increase the mRNA expression of cyclin-dependent kinase 4 compared with the control group in feeding 160-day calves. These results indicate that propionate may act as a signaling molecule to improve rumen epithelium development through stimulating mRNA expression of GPR41 and GPR43.
Fermented soybean meal (FSM), which has lower anti-nutritional factors and higher active enzyme, probiotic and oligosaccharide contents than its unfermented form, has been reported to improve the feeding value of soybean meal, and hence, the growth performance of piglets. However, whether FSM can affect the bacterial and metabolites in the large intestine of piglets remains unknown. This study supplemented wet-FSM (WFSM) or dry-FSM (DFSM) (5% dry matter basis) in the diet of piglets and investigated its effects on carbon and nitrogen metabolism in the piglets’ large intestines. A total of 75 41-day-old Duroc×Landrace×Yorkshire piglets with an initial BW of 13.14±0.22 kg were used in a 4-week feeding trial. Our results showed that the average daily gain of piglets in the WFSM and DFSM groups increased by 27.08% and 14.58% and that the feed conversion ratio improved by 18.18% and 7.27%, respectively, compared with the control group. Data from the prediction gene function of Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) based on 16S ribosomal RNA (rRNA) sequencing showed that carbohydrate metabolism function families in the WFSM and DFSM groups increased by 3.46% and 2.68% and that the amino acid metabolism function families decreased by 1.74% and 0.82%, respectively, compared with the control group. These results were consistent with those of other metabolism studies, which showed that dietary supplementation with WFSM and DFSM increased the level of carbohydrate-related metabolites (e.g. 4-aminobutanoate, 5-aminopentanoate, lactic acid, mannitol, threitol and β-alanine) and decreased the levels of those related to protein catabolism (e.g. 1,3-diaminopropane, creatine, glycine and inosine). In conclusion, supplementation with the two forms of FSM improved growth performance, increased metabolites of carbohydrate and reduced metabolites of protein in the large intestine of piglets, and WFSM exhibited a stronger effect than DFSM.
MicroRNAs (miRNAs) are a class of small non-coding RNAs that negatively regulate gene expression of target messenger RNAs (mRNAs) and miRNAs have been proven to play vital roles in skeletal muscle development. The miRNA-499-5p has been reported to be negatively related with the expression of Sox6, a critical transcription factor for the maintenance of fast-twitch skeletal muscle. In this study, we amplified a length of 2012-bp mRNA that contains a 1512-bp porcine Sox6 (pSox6) 3'UTR from skeletal muscle of a Duroc×Landrace×Yorkshire pig. By luciferase reporter assay we verified that pSox6 is a target of miR-499-5p. In extensor digitorum longus and Soleus muscles of pigs, the expression levels of miR-499-5p and pSox6 mRNA were also inversely correlated. Besides, overexpression of miR-499-5p in porcine satellite cells promoted the expression of MyHC I and MyHC IIa mRNA, along with a reduction of pSox6 mRNA. Taken together, these results indicate that miR-499-5p may facilitate the oxidative myofibers formation by downregulating pSox6 expression.
Using the spectroscopic distances of over 0.12 million A-type stars selected from the LAMOST Spectroscopic Survey of the Galactic Anti-center (LSS-GAC), we map their three-dimensional number density distributions in the Galaxy. These stellar number density maps allow an investigation of the Galactic young age thin disk structure with no a priori assumptions about the functional form of its components. The data show strong evidence for a significant flaring young disk. A more detail analysis show that the stellar flaring have different behaviours between the Northern and the Southern Galactic disks. The maps also reveal spatially coherent, kpc-scale stellar substructure in the thin disk. Finally, we detect the Perseus arm stellar overdensity at R ~ 10 kpc.
Using the data from the LAMOST Galactic spectroscopic surveys and some other surveys, we have started a series of work to measure the mass distribution of our Galaxy. As a result of the first-stage, we have constructed the Galactic rotation curve out to 100 kpc and the Galactic escape velocity curve between 5 and 14 kpc. From the two curves, we have built parametrized mass models for our Galaxy, respectively. Both models yield a similar result for the Milky Way's virial mass: ~ 0.9 × 1012 M⊙.