We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Children with congenital heart disease (CHD) can face neurodevelopmental, psychological, and behavioural difficulties beginning in infancy and continuing through adulthood. Despite overall improvements in medical care and a growing focus on neurodevelopmental screening and evaluation in recent years, neurodevelopmental disabilities, delays, and deficits remain a concern. The Cardiac Neurodevelopmental Outcome Collaborative was founded in 2016 with the goal of improving neurodevelopmental outcomes for individuals with CHD and pediatric heart disease. This paper describes the establishment of a centralised clinical data registry to standardize data collection across member institutions of the Cardiac Neurodevelopmental Outcome Collaborative. The goal of this registry is to foster collaboration for large, multi-centre research and quality improvement initiatives that will benefit individuals and families with CHD and improve their quality of life. We describe the components of the registry, initial research projects proposed using data from the registry, and lessons learned in the development of the registry.
This review traces the development of motivational interviewing (MI) from its happenstance beginnings and the first description published in this journal in 1983, to its continuing evolution as a method that is now in widespread practice in many professions, nations and languages. The efficacy of MI has been documented in hundreds of controlled clinical trials, and extensive process research sheds light on why and how it works. Developing proficiency in MI is facilitated by feedback and coaching based on observed practice after initial training. The author reflects on parallels between MI core processes and the characteristics found in 70 years of psychotherapy research to distinguish more effective therapists. This suggests that MI offers an evidence-based therapeutic style for delivering other treatments more effectively. The most common use of MI now is indeed in combination with other treatment methods such as cognitive behaviour therapies.
Recent research has shown that risk and reward are positively correlated in many environments, and that people have internalized this association as a “risk-reward heuristic”: when making choices based on incomplete information, people infer probabilities from payoffs and vice-versa, and these inferences shape their decisions. We extend this work by examining people’s expectations about another fundamental trade-off — that between monetary reward and delay. In 2 experiments (total N = 670), we adapted a paradigm previously used to demonstrate the risk-reward heuristic. We presented participants with intertemporal choice tasks in which either the delayed reward or the length of the delay was obscured. Participants inferred larger rewards for longer stated delays, and longer delays for larger stated rewards; these inferences also predicted people’s willingness to take the delayed option. In exploratory analyses, we found that older participants inferred longer delays and smaller rewards than did younger ones. All of these results replicated in 2 large-scale pre-registered studies with participants from a different population (total N = 2138). Our results suggest that people expect intertemporal choice tasks to offer a trade-off between delay and reward, and differ in their expectations about this trade-off. This “delay-reward heuristic” offers a new perspective on existing models of intertemporal choice and provides new insights into unexplained and systematic individual differences in the willingness to delay gratification.
Here we present stringent low-frequency (185 MHz) limits on coherent radio emission associated with a short-duration gamma-ray burst (SGRB). Our observations of the short gamma-ray burst (GRB) 180805A were taken with the upgraded Murchison Widefield Array (MWA) rapid-response system, which triggered within 20s of receiving the transient alert from the Swift Burst Alert Telescope, corresponding to 83.7 s post-burst. The SGRB was observed for a total of 30 min, resulting in a
$3\sigma$
persistent flux density upper limit of 40.2 mJy beam–1. Transient searches were conducted at the Swift position of this GRB on 0.5 s, 5 s, 30 s and 2 min timescales, resulting in
$3\sigma$
limits of 570–1 830, 270–630, 200–420, and 100–200 mJy beam–1, respectively. We also performed a dedispersion search for prompt signals at the position of the SGRB with a temporal and spectral resolution of 0.5 s and 1.28 MHz, respectively, resulting in a
$6\sigma$
fluence upper-limit range from 570 Jy ms at DM
$=3\,000$
pc cm–3 (
$z\sim 2.5$
) to 1 750 Jy ms at DM
$=200$
pc cm–3 (
$z\sim 0.1)$
, corresponding to the known redshift range of SGRBs. We compare the fluence prompt emission limit and the persistent upper limit to SGRB coherent emission models assuming the merger resulted in a stable magnetar remnant. Our observations were not sensitive enough to detect prompt emission associated with the alignment of magnetic fields of a binary neutron star just prior to the merger, from the interaction between the relativistic jet and the interstellar medium (ISM) or persistent pulsar-like emission from the spin-down of the magnetar. However, in the case of a more powerful SGRB (a gamma-ray fluence an order of magnitude higher than GRB 180805A and/or a brighter X-ray counterpart), our MWA observations may be sensitive enough to detect coherent radio emission from the jet-ISM interaction and/or the magnetar remnant. Finally, we demonstrate that of all current low- frequency radio telescopes, only the MWA has the sensitivity and response times capable of probing prompt emission models associated with the initial SGRB merger event.
The Murchison Widefield Array (MWA) is an open access telescope dedicated to studying the low-frequency (80–300 MHz) southern sky. Since beginning operations in mid-2013, the MWA has opened a new observational window in the southern hemisphere enabling many science areas. The driving science objectives of the original design were to observe 21 cm radiation from the Epoch of Reionisation (EoR), explore the radio time domain, perform Galactic and extragalactic surveys, and monitor solar, heliospheric, and ionospheric phenomena. All together
$60+$
programs recorded 20 000 h producing 146 papers to date. In 2016, the telescope underwent a major upgrade resulting in alternating compact and extended configurations. Other upgrades, including digital back-ends and a rapid-response triggering system, have been developed since the original array was commissioned. In this paper, we review the major results from the prior operation of the MWA and then discuss the new science paths enabled by the improved capabilities. We group these science opportunities by the four original science themes but also include ideas for directions outside these categories.
Although we find Gangestad & Simpson's argument intriguing, we question some of its underlying assumptions, including: (1) that fluctuating asymmetry (FA) is consistently heritable; (2) that symmetry is driving the effects; (3) that use of parametric tests with FA is appropriate; and (4) that a short-term mating strategy produces more offspring than a long-term strategy.
The warm, equable, and ice-free early Eocene Epoch permits investigation of ecosystem function and macro-ecological patterns during a very different climate regime than exists today. It also provides insight into what the future may entail, as anthropogenic CO2 release drives Earth toward a comparable hothouse condition. Studying plant–insect herbivore food webs during hothouse intervals is warranted, because these account for the majority of nonmicrobial terrestrial biodiversity. Here, we report new plant and insect herbivore damage census data from two floodplain sites in the Wind River Basin of central Wyoming, one in the Aycross Formation (50–48.25 Ma) at the basin edge (WRE) and the second in the Wind River Formation in the interior of the basin (WRI). The WRI site is in stratigraphic proximity to a volcanic ash that is newly dated to 52.416 ± 0.016/0.028/0.063 (2σ). We compare the Wind River Basin assemblages to published data from a 52.65 Ma floodplain flora in the neighboring Bighorn (BH) Basin and find that only 5.6% of plant taxa occur at all three sites and approximately 10% occur in both basins. The dissimilar floras support distinct suites of insect herbivores, as recorded by leaf damage. The relatively low-diversity BH flora has the highest diversity of insect damage, contrary to hypotheses that insect herbivore diversity tracks floral diversity. The distinctiveness of the WRE flora is likely due to its younger age and cooler reconstructed paleotemperature, but these factors are nearly identical for the WRI and BH floras. Site-specific microenvironmental factors that cannot be measured easily in deep time may account for these differences. Alternatively, the Owl Creek Mountains between the two basins may have provided a formidable barrier to the thermophilic organisms that inhabited the basin interiors, supporting Janzen's hypothesis that mountain passes appear higher in tropical environments.
For the first time, valence electron energy-loss spectroscopy (VEELS) was applied to individual single-crystalline SnO2 nanowires to investigate the dielectric function, band gap, and optical absorption coefficient. The results are compared with data from optical techniques such as spectroscopic ellipsometry and UV-Vis, and theoretical calculations from variations of density functional theory. The data obtained agree well with the standard optical and theoretical techniques. The dielectric function and optical absorption coefficient are given up to 20 eV, which otherwise requires a synchrotron source and large single crystals via optical methods. The energy loss function is given up to 40 eV, which gives a useful comparison to previous theoretical studies in an energy range that cannot be achieved via optical measurements. The comparison gives confidence in the accuracy of this method for exploring spatially-resolved measurements in individual nanoparticles or more complex nanostructures that are otherwise difficult to measure accurately using optical techniques.
Herbicide soil/solution distribution coefficients (Kd) are used in mathematical models to predict the movement of herbicides in soil and groundwater. Herbicides bind to various soil constituents to differing degrees. The universal soil colloid that binds most herbicides is organic matter (OM), however clay minerals (CM) and metallic hydrous oxides are more retentive for cationic, phosphoric, and arsenic acid compounds. Weakly basic herbicides bind to both organic and inorganic soil colloids. The soil organic carbon (OC) affinity coefficient (Koc) has become a common parameter for comparing herbicide binding in soil; however, because OM and OC determinations vary greatly between methods and laboratories, Koc values may vary greatly. This proposal discusses this issue and offers suggestions for obtaining the most accurate Kd, Freundlich constant (Kf), and Koc values for herbicides listed in the WSSA Herbicide Handbook and Supplement.
Autoradiography is a radioisotope-based technique that allows absorbed and translocated herbicide to be visualized. Autoradiographs are traditionally produced with X-ray film and exposure times of several weeks. Phosphorescence imaging (PI) was investigated as an alternative autoradiography procedure. Smallflower morningglory plants were root-exposed to a series of 14C-atrazine concentrations, producing a series of increasing foliar radioactivity concentrations (i.e., dosage) that ranged from marginal to excessive with respect to autoradiography. Autoradiographs were subsequently produced from these 14C-atrazine-dosed plants using both the X-ray film and the PI technique. Autoradiographs from both techniques were of excellent quality and nearly identical when the dosage was ∼20 to 70 Bq/mg. However, PI produces an acceptable image in dosages either above or below this optimum range. A 1-d exposure time was sufficient with PI, and longer exposure times were not detrimental to image quality. In contrast, a 3-wk exposure time was required with X-ray film. Autoradiographs of selected herbicides are presented to further demonstrate the utility of PI.
The Commodity Credit Corporation (CCC), established by Executive Order in 1933 and granted a federal charter in 1948, is authorized to extend nonrecourse loans to farmers who use agricultural commodities from the most recent harvest as collateral. The loan program was designed to foster a more orderly marketing procedure and stabilize agricultural prices and income, but farmers also use this program as both a residual market and a speculation and marketing aid. The amount loaned to a farmer equals the quantity of the commodity pledged as collateral times a fixed per unit value (loan rate) which is announced prior to the production period. Eligibility of a farmer for a CCC loan may require compliance with USDA allotment or set-aside programs and storage of the commodity in a CCC approved facility. The CCC's commodity demand via the loan program is perfectly elastic at the loan rate and farmers can supply as much as they desire. When the loan matures the farmer can either repay it with interest or default on both principal and interest, in which case the CCC assumes ownership of the pledged commodity.