We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We aimed to report an overview of trends in suicide mortality and years of life lost (YLLs) among adolescents and young adults aged 10–24 years by sex, age group, Socio-demographic Index (SDI), region and country from 1990 to 2021 as well as the suicide mortality with age, period and birth cohort effects.
Methods
Estimates and 95% uncertainty intervals for suicide mortality and YLLs were extracted from the Global Burden of Diseases Study 2021. Joinpoint analysis was used to calculate the annual percentage change (APC) and average annual percentage change (AAPC) to describe the mortality and rate of YLLs trends. Age, period and cohort model was utilized to disentangle age, period and birth cohort effects on suicide mortality trends.
Results
Globally, suicide mortality and the rate of YLLs among adolescents and young adults both declined from 1990 to 2021 (AAPC: −1.6 [−2.1 to −1.2]). In 2021, the global number of suicide death cases was 112.9 thousand [103.9–122.2 thousand] and led to 7.9 million [7.2–8.6 million] YLLs. A significant reduction in suicide mortality was observed in all sexes and age groups. By SDI quintiles, the high SDI region (AAPC: −0.3 [−0.6 to 0.0]) had the slowest decline trend, and low-middle SDI region remained the highest suicide mortality till 2021 (7.8 per 100,000 population [6.9–8.6]). Most SDI regions showed generally lower period and cohort effects during the study period, whereas high SDI region showed more unfavourable risks, especially period and cohort effects in females. Regionally, Central Latin America (AAPC: 1.7 [1.1–2.3]), Tropical Latin America (AAPC: 1.5 [0.9–2.0]), High-income Asia Pacific (AAPC: 1.2 [0.7–1.7]) and Southern sub-Saharan Africa (AAPC: 0.8 [0.4–1.2]) had the significance increase in suicide mortality. In 2021, Southern sub-Saharan Africa had the highest mortality (10.5 per 100,000 population [8.6–12.5]). Nationally, a total of 29 countries had a significant upward trend in suicide mortality and rate of YLLs over the past three decades, and certain countries in low-middle and middle regions exhibited an extremely higher burden of suicide.
Conclusions
Global suicide mortality and the rate of YLLs among adolescents and young adults both declined from 1990 to 2021, but obvious variability was observed across regions and countries. Earlier mental health education and targeted management are urgently required for adolescents and young adults in certain areas.
MicroRNAs (miRNAs) are endogenous, non-coding RNAs, which are functional in a variety of biological processes through post-transcriptional regulation of gene expression. However, the role of miRNAs in the interaction between Bacillus thuringiensis and insects remains unclear. In this study, small RNA libraries were constructed for B. thuringiensis-infected (Bt) and uninfected (CK) Spodoptera exigua larvae (treated with double-distilled water) using Illumina sequencing. Utilising the miRDeep2 and Randfold, a total of 233 known and 726 novel miRNAs were identified, among which 16 up-regulated and 34 down-regulated differentially expressed (DE) miRNAs were identified compared to the CK. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that potential target genes of DE miRNAs were associated with ABC transporters, fatty acid metabolism and MAPK signalling pathway which are related to the development, reproduction and immunity. Moreover, two miRNA core genes, SeDicer1 and SeAgo1 were identified. The phylogenetic tree showed that lepidopteran Dicer1 clustered into one branch, with SeDicer1 in the position closest to Spodoptera litura Dicer1. A similar phylogenetic relationship was observed in the Ago1 protein. Expression of SeDicer1 increased at 72 h post infection (hpi) with B. thuringiensis; however, expression of SeDicer1 and SeAgo1 decreased at 96 hpi. The RNAi results showed that the knockdown of SeDicer1 directly caused the down-regulation of miRNAs and promoted the mortality of S. exigua infected by B. thuringiensis GS57. In conclusion, our study is crucial to understand the relationship between miRNAs and various biological processes caused by B. thuringiensis infection, and develop an integrated pest management strategy for S. exigua via miRNAs.
In particle-laden turbulent wall flows, lift forces can influence the near-wall turbulence. This has been observed recently in particle-resolved simulations, which, however, are too expensive to be used in upscaled models. Instead, point-particle simulations have been the method of choice to simulate the dynamics of these flows during the last decades. While this approach is simpler, cheaper and physically sound for small inertial particles in turbulence, some issues remain. In the present work, we address challenges associated with lift force modelling in turbulent wall flows and the impact of lift forces in the near-wall flow. We performed direct numerical simulations of small inertial point particles in turbulent channel flow for fixed Stokes number and mass loading while varying the particle size. Our results show that the particle dynamics in the buffer region, causing the apparent particle-to-fluid slip velocity to vanish, raises major challenges for modelling lift forces accurately. While our results confirm that lift forces have little influence on particle dynamics for sufficiently small particle sizes, for inner-scaled diameters of order one and beyond, lift forces become quite important near the wall. The different particle dynamics under lift forces results in the modulation of streamwise momentum transport in the near-wall region. We analyse this lift-induced turbulence modulation for different lift force models, and the results indicate that realistic models are critical for particle-modelled simulations to correctly predict turbulence modulation by particles in the near-wall region.
Malignant vasovagal syncope in children seriously affects their physical and mental health. Our study aimed to explore the efficacy of catheter ablation in ganglionated plexus with malignant vasovagal syncope children.
Conclusion:
Catheter ablation of ganglionated plexus was safe and effective in children with malignant vasovagal syncope and can be used as a treatment option for these children.
Methods:
A total of 20 children diagnosed with malignant vasovagal syncope were enrolled in Beijing Children’s Hospital, affiliated with Capital Medical University. All underwent catheter ablation treatment of ganglionated plexus. Ganglionated plexuses of the left atrium were identified by high-frequency stimulation and/or anatomic landmarks being targeted by radiofrequency catheter ablation. The efficacy of the treatment was evaluated by comparing the remission rate of post-operative syncopal symptoms and the rate of negative head-up tilt results. Safety and adverse events were evaluated.
Results:
After follow-up for 2.5 (0.6–5) years, the syncope symptom scores were decreased significantly compared with before treatment [3 (2–4) versus 5 (3–8) scores, P < 0.01]. Eighty-five per cent (17/20) children no longer experienced syncope, whilst 80% (16/20) children showed negative head-up tilt test after treatment. No adverse effects such as cardiac arrhythmia occurred in the children.
Illite is a common clay mineral that is found in a wide range of geological settings. The good thermal stability and non-swelling properties of illite make it valuable in ceramic materials, paints and coatings, drilling fluids, agriculture and geological studies. To gain a deeper understanding of the physical and chemical properties of illite, in the present paper the atomic and electronic structures of a typical trans-vacant 1M Al-rich illite were constructed and calculated using density functional theory. The calculated indirect band gap of Al-rich illite was 4.99 eV. The electronic analysis revealed that the interactions in the tetrahedral sheet were more stable than those in the octahedral sheet. The substitution of Al atoms noticeably reduced the stability of the tetrahedral sheet in Al-rich illite. Other properties of Al-rich illite, including the density of states, electron population/charge, electronic charge density and bonding interaction, are also discussed and analysed in detail.
Product graphics interchange formats (GIFs) employ this format to show the features of the product and make up for the lack of physical experience online. These GIFs have been widely applied in domains such as e-shopping and social media, aiming to interest and impress viewers. Contrary to this wide application, most designers in this domain lack expertise and produce GIFs of varied quality. Moreover, the knowledge of techniques to enhance viewers’ engagement with product GIFs is also lacking. To bridge the gap, we conducted a series of studies. First, we collected and summarized seven design factors referring to existing literature and semi-structured interviews. Then, the impacts of these design factors were revealed through an online study with 106 product GIFs among 307 participants. The results showed that visual-related factors such as color contrast and moving intensity mainly impact viewers’ interest, while content-related factors such as scenario and style matching impact viewers’ impressions. The simplicity of GIFs also impressed viewers with a quick viewing mode. Finally, we conducted a workshop and verified that these results support large-scale production of product GIFs. Our studies might support the codesign methods of product GIFs and enhance their quality in design practice.
The near wake of a hemisphere immersed in a laminar boundary layer is studied utilizing time-resolved tomographic particle image velocimetry (TPIV). Focus is placed on the three-dimensional vortical structures and the formation details of hairpin vortices before the onset of transition. The three-dimensional instantaneous pressure field of the hemisphere wake is reconstructed for better understanding the flow mechanism. Experiments are carried out with Reynolds number $Re_{r}=1370$, based on the hemisphere radius $R$. Features of periodicity of the near wake are analysed using proper orthogonal decomposition and Fourier transformation. The velocity fluctuation in the wall-normal direction is shown to be crucial to the formation of hairpin vortices in the near wake. By investigating the transport of mass and vorticity, and the correlation between pressure and hairpin vortex strength, the formation mechanism is revealed clearly. Specifically, the main hairpin vortices (MHVs) are formed within the reaction of outer high-speed flow and near-wall flow. The formation of the head portion is followed by the leg portion formation. The shedding of the MHVs is highly correlated with the pressure, as well as the pressure gradient in the wall-normal direction. For the side hairpin vortices (SHVs), the leg portion is formed first, followed by the generation of the head portion thanks to induction of the re-oriented standing vortices. The generation of the SHVs can be regarded as the downstream bridging of the standing vortices, similar to the generation of hairpin vortices due to the connection of streamwise vortices in turbulent boundary layers.
Rodents and shrews are major reservoirs of various pathogens that are related to zoonotic infectious diseases. The purpose of this study was to investigate co-infections of zoonotic pathogens in rodents and shrews trapped in four provinces of China. We sampled different rodent and shrew communities within and around human settlements in four provinces of China and characterised several important zoonotic viral, bacterial, and parasitic pathogens by PCR methods and phylogenetic analysis. A total of 864 rodents and shrews belonging to 24 and 13 species from RODENTIA and EULIPOTYPHLA orders were captured, respectively. For viral pathogens, two species of hantavirus (Hantaan orthohantavirus and Caobang orthohantavirus) were identified in 3.47% of rodents and shrews. The overall prevalence of Bartonella spp., Anaplasmataceae, Babesia spp., Leptospira spp., Spotted fever group Rickettsiae, Borrelia spp., and Coxiella burnetii were 31.25%, 8.91%, 4.17%, 3.94%, 3.59%, 3.47%, and 0.58%, respectively. Furthermore, the highest co-infection status of three pathogens was observed among Bartonella spp., Leptospira spp., and Anaplasmataceae with a co-infection rate of 0.46%. Our results suggested that species distribution and co-infections of zoonotic pathogens were prevalent in rodents and shrews, highlighting the necessity of active surveillance for zoonotic pathogens in wild mammals in wider regions.
Preterm birth is a global health problem and associated with increased risk of long-term developmental impairments, but findings on the adverse outcomes of prematurity have been inconsistent.
Methods
Data were obtained from the baseline session of the ongoing longitudinal Adolescent Brain and Cognitive Development (ABCD) Study. We identified 1706 preterm children and 1865 matched individuals as Control group and compared brain structure (MRI data), cognitive function and mental health symptoms.
Results
Results showed that preterm children had higher psychopathological risk and lower cognitive function scores compared to controls. Structural MRI analysis indicated that preterm children had higher cortical thickness in the medial orbitofrontal cortex, parahippocampal gyrus, temporal and occipital gyrus; smaller volumes in the temporal and parietal gyrus, cerebellum, insula and thalamus; and smaller fiber tract volumes in the fornix and parahippocampal-cingulum bundle. Partial correlation analyses showed that gestational age and birth weight were associated with ADHD symptoms, picvocab, flanker, reading, fluid cognition composite, crystallized cognition composite and total cognition composite scores, and measures of brain structure in regions involved with emotional regulation, attention and cognition.
Conclusions
These findings suggest a complex interplay between psychopathological risk and cognitive deficits in preterm children that is associated with changes in regional brain volumes, cortical thickness, and structural connectivity among cortical and limbic brain regions critical for cognition and emotional well-being.
Childhood maltreatment (CM) exerts long-lasting psychological and biological alterations in affected individuals and might also affect the endocannabinoid (eCB) system which modulates inflammation and the endocrine stress response. Here, we investigated the eCB system of women with and without CM and their infants using hair samples representing eCB levels accumulated during the last trimester of pregnancy and 10–12 months postpartum.
Methods
CM exposure was assessed with the Childhood Trauma Questionnaire. At both timepoints, 3 cm hair strands were collected from mothers and children (N = 170 resp. 150) to measure anandamide (AEA), 2/1-arachidonoylglycerol (2-AG/1-AG), stearoylethanolamide (SEA), oleoylethanolamide (OEA), and palmitoylethanolamide (PEA).
Results
Maternal hair levels of 2-AG/1-AG increased and SEA levels decreased from late pregnancy to one year postpartum. Maternal CM was associated with lower SEA levels in late pregnancy, but not one year later. In the children's hair, levels of 2-AG/1-AG increased while levels of SEA, OEA, and PEA decreased from late pregnancy to one year later. Maternal CM was not consistently associated with the eCB levels measured in children's hair.
Conclusions
We provide first evidence for longitudinal change in the eCB system of mothers and infants from pregnancy to one year later. While maternal CM influenced the maternal eCB system, we found no consistent intergenerational effects on early regulation of the eCB system in children. Longitudinal research on the importance of the eCB system for the course and immunoregulation of pregnancy as well as for the children's development.
Trematodes of the genus Ogmocotyle are intestinal flukes that can infect a variety of definitive hosts, resulting in significant economic losses worldwide. However, there are few studies on molecular data of these trematodes. In this study, the mitochondrial (mt) genome of Ogmocotyle ailuri isolated from red panda (Ailurus fulgens) was determined and compared with those from Pronocephalata to investigate the mt genome content, genetic distance, gene rearrangements and phylogeny. The complete mt genome of O. ailuri is a typical closed circular molecule of 14 642 base pairs, comprising 12 protein-coding genes (PCGs), 22 transfer RNA genes, 2 ribosomal RNA genes and 2 non-coding regions. All genes are transcribed in the same direction. In addition, 23 intergenic spacers and 2 locations with gene overlaps were determined. Sequence identities and sliding window analysis indicated that cox1 is the most conserved gene among 12 PCGs in O. ailuri mt genome. The sequenced mt genomes of the 48 Plagiorchiida trematodes showed 5 types of gene arrangement based on all mt genome genes, with the gene arrangement of O. ailuri being type I. Phylogenetic analysis using concatenated amino acid sequences of 12 PCGs revealed that O. ailuri was closer to Ogmocotyle sikae than to Notocotylus intestinalis. These data enhance the Ogmocotyle mt genome database and provide molecular resources for further studies of Pronocephalata taxonomy, population genetics and systematics.
In this paper, we apply standard zooarchaeological methods and novel osteological approaches to analyse faunal remains from five Middle–Late Holocene sites in the southern Tibetan Plateau (STP). Framed by direct radiocarbon dates on taxonomically classified bioarchaeological remains and compared with published palaeoclimate data, our findings revealed a three-stage process of agro-pastoral development in the STP ca. 5.5 to 1.0 ka. In the first phase, habitation was restricted to the lower southeastern part of the plateau and human subsistence essentially based on foraging and low-level pig–millet farming. With the onset of colder and drier climatic conditions ca. 3.8 ka, the study area witnessed a growing human presence at higher elevations in its central and western parts, together with a shift towards bovid husbandry and barley cultivation, that is, agricultural practices that originated in west Asia; these were likely introduced to the STP following the eastern margin of the TP and/or arrived by sub-Himalayan transfer. Climate and ecological degradation might have contributed to the decline of local game in favour of cold-and-dry-tolerant pastoral livestock and crops. Our work shows that Middle–Late Holocene climate change, ecological change, human subsistence shifts, and prehistoric cultural transmissions are intimately connected.
Objectives: Rapid and accurate screening for carbapenemase-producing organism (CPOs) in hospitalized patients is critical for infection control and prevention. The Xpert Carba-R assay is designed for rapid detection of CPOs, but 1 assay is usually conducted for only 1 sample. We evaluated a pooling strategy for CPO screening using the Xpert Carba-R assay. Methods: Swab sets containing 2 swabs were collected from 415 unique patients at Peking University People’s Hospital. One swab was used for the pooling test, in which 5 swabs from different patients were mixed in 1 sample treatment solution. The prevalence of CPOs in the hospital (5.3%) predicted that 5:1 pooling was most economical. As the reference method, the other swab was tested by culture using sequencing. Results: Of 415 samples, 383 were CPO negative using the pooling test strategy and 31 were positive. All samples that were negative by pooling were negative by culture and sequencing. Among the 31 positive samples identified by the pooling strategy, 26 were positive by culture and sequencing (including 24 samples with 1 targeted gene and 2 samples with double targeted genes, 1 NDM+/IMP+ and 1 VIM+/IMP+), and 5 were negative. Overall, 198 tests were conducted in the study, and 217 were saved compared with testing individually. The efficiency of the pooling strategy was 215%. The overall sensitivity was 1 (95% CI, 0.840–1), the specificity was 0.987 (95% CI, 0.968–0.995), the accuracy was 0.987 (95% CI, 0.970–0.996), positive predictive value was 0.838 (95% CI, 0.655–0.939), and the negative predictive value was 1 (95% CI, 0.988–1). Conclusions: The pooling strategy using the Xpert Carba-R assay showed good potential in screening CPO with good sensitivity and a significantly lower cost.
We present a high-energy, hundred-picosecond (ps) pulsed mid-ultraviolet solid-state laser at 266 nm by a direct second harmonic generation (SHG) in a barium borate (BaB2O4, BBO) nonlinear crystal. The green pump source is a 710 mJ, 330 ps pulsed laser at a wavelength of 532 nm with a repetition rate of 1 Hz. Under a green pump energy of 710 mJ, a maximum output energy of 253.3 mJ at 266 nm is achieved with 250 ps pulse duration resulting in a peak power of more than 1 GW, corresponding to an SHG conversion efficiency of 35.7% from 532 to 266 nm. The experimental data were well consistent with the theoretical prediction. To the best of our knowledge, this laser exhibits both the highest output energy and highest peak power ever achieved in a hundred-ps/ps regime at 266 nm for BBO-SHG.
We perform two-way coupled direct numerical simulation of particle-laden flow in an open channel at a friction Reynolds number ($Re_{\tau }$) of 5186, which exhibits many characteristics of high-Reynolds-number wall-bounded turbulence, such as the distinct separation of scales in the inner and outer layers. Three representative cases, an unladen case and low- and high-Stokes-number particle-laden cases, are performed to investigate the turbulent modification by particles. To this end, we compare several statistical quantities to understand the particle effect on momentum exchange and interphasial energy transfer. The modulation of large-scale motions (LSMs) and very-large-scale motions (VLSMs) are analysed using spectral information, and we find that the LSMs and VLSMs are generally weakened in the inner and outer layers, which is qualitatively different from similar simulations at lower Reynolds numbers ($Re_{\tau } \approx 500$). The spatial structures are investigated with correlation analysis, and inclined VLSMs are observed in the near-wall region, with decreased inclination angles by particles. The particles tend to widen and shorten the spanwise and streamwise extent of coherent structures, respectively. Furthermore, we find that the vorticity vector displays a preferential alignment with the eigenvector corresponding to the intermediate eigenvalue of the strain-rate tensor, independent of the particle Stokes number.
In the present study, we investigated the influence of different mid-stage N compensation timings on agronomic and physiological traits associated with grain yield and quality in field experiments. Two japonica rice cultivars with a good tasting quality (Nangeng 9108 and Nangeng 5055) were examined under eight N compensation timings (N1–N6: one-time N compensation at 7-2 weeks before heading; N7: split N compensation at 5 and 3 weeks before heading; N8: split N compensation at 4 and 2 weeks before heading) and a control with no N compensation. The highest yield was obtained with N7, followed by N3. The yield advantage is mainly attributable to the improved population structure (higher productive tiller rate with a stable number of effective panicles), higher total number of spikelets per unit area (large panicles with more grains per panicle), larger leaf area index in the late period and higher photosynthetic production capacity (more dry matter accumulation and transportation in the middle and late periods). Delaying N compensation timing improved the processing and nutritional quality of rice, but decreased the quality of appearance and cooking/eating traits. Our results suggest that, from the perspective of achieving relative coordination between high yield and high quality of japonica rice, the optimal N compensation should be divided equally at 5 and 3 weeks before heading. However, if simplifying the number of operations and the pursuit of eating quality were considered, one-time N compensation should be conducted at 5 weeks before heading.
The Qieganbulake deposit associated with a mafic–ultramafic–carbonatite complex in the Kuluketage block is not only the world’s second-largest vermiculite deposit, but also a medium-size carbonatite-related phosphate deposit. Field observations, radiometric dating results and Sr–Nd–Hf isotopes reveal that the parental magmas of the carbonatite and mafic–ultramafic rocks are cogenetic and formed synchronously at c. 810 Ma. Geochemical characteristics and Sr–Nd–Hf–S isotopes ((87Sr/86Sr)i = 0.70581–0.70710; ϵNd(t) = −0.20 to −11.80; ϵHf(t) = −7.5 to −10.3; δ34S = +0.7 ‰ to +3.0 ‰ (some sulfides with high δ34S values (+3.2 to +6.6) were formed by late hydrothermal sulfur)), in combination with mineral compositions and previous research, strongly indicate that the Qieganbulake mafic–ultramafic–carbonatite complex formed via extensive crystal fractionation/cumulation and liquid immiscibility of a carbonated tholeiitic magma, possibly derived from partial melting of an enriched subcontinental lithospheric mantle previously modified by slab-released fluids and sediment input in a continental rift setting. The coupled enriched Sr–Nd isotopic signatures, in combination with previous research, suggest that the enriched subcontinental lithospheric mantle could have been metasomatized by asthenospheric mantle melts to different degrees. The Qieganbulake carbonatite-related phosphate ores were the products of normal fractional crystallization/cumulation of P–Fe3+ complex enriched carbonatite magma in high oxygen fugacity conditions, which was generated by liquid immiscibility of CO2–Fe–Ti–P-rich residual magma undergoing high differentiation.
Despite increasing knowledge on the neuroimaging patterns of eating disorder (ED) symptoms in non-clinical populations, studies using whole-brain machine learning to identify connectome-based neuromarkers of ED symptomatology are absent. This study examined the association of connectivity within and between large-scale functional networks with specific symptomatic behaviors and cognitions using connectome-based predictive modeling (CPM).
Methods
CPM with ten-fold cross-validation was carried out to probe functional networks that were predictive of ED-associated symptomatology, including body image concerns, binge eating, and compensatory behaviors, within the discovery sample of 660 participants. The predictive ability of the identified networks was validated using an independent sample of 821 participants.
Results
The connectivity predictive of body image concerns was identified within and between networks implicated in cognitive control (frontoparietal and medial frontal), reward sensitivity (subcortical), and visual perception (visual). Crucially, the set of connections in the positive network related to body image concerns identified in one sample was generalized to predict body image concerns in an independent sample, suggesting the replicability of this effect.
Conclusions
These findings point to the feasibility of using the functional connectome to predict ED symptomatology in the general population and provide the first evidence that functional interplay among distributed networks predicts body shape/weight concerns.
The role of dietary factors in osteoporotic fractures (OFs) in women is not fully elucidated. We investigated the associations between incidence of OF and dietary calcium, magnesium and soy isoflavone intake in a longitudinal study of 48 584 postmenopausal women. Multivariable Cox regression was applied to derive hazard ratios (HRs) and 95 % confidence intervals (CIs) to evaluate associations between dietary intake, based on the averages of two assessments that took place with a median interval of 2⋅4 years, and fracture risk. The average age of study participants is 61⋅4 years (range 43⋅3–76⋅7 years) at study entry. During a median follow-up of 10⋅1 years, 4⋅3 % participants experienced OF. Compared with daily calcium intake ≤400 mg/d, higher calcium intake (>400 mg/d) was significantly associated with about a 40–50 % reduction of OF risk among women with a calcium/magnesium (Ca/Mg) intake ratio ≥1⋅7. Among women with prior fracture history, high soy isoflavone intake was associated with reduced OF risk; the HR was 0⋅72 (95 % CI 0⋅55, 0⋅93) for the highest (>42⋅0 mg/d) v. lowest (<18⋅7 mg/d) quartile intake. This inverse association was more evident among recently menopausal women (<10 years). No significant association between magnesium intake and OF risk was observed. Our findings provide novel information suggesting that the association of OF risk with dietary calcium intake was modified by Ca/Mg ratio, and soy isoflavone intake was modified by history of fractures and time since menopause. Our findings, if confirmed, can help to guide further dietary intervention strategies for OF prevention.
Hyperhomocysteinaemia (HHcy) is associated with all-cause mortality in some disease states. However, the correlation between HHcy and the risk of mortality in the general population has rarely been researched. We aimed to evaluate the association between HHcy and all-cause and cause-specific mortality among adults in the USA. This study analysed data from the National Health and Nutrition Examination Survey database (1999–2002 survey cycle). A multivariable Cox regression model was built to evaluate the correlation between HHcy and all-cause and cause-specific mortality. Smooth curve fitting was used to analyse their dose-dependent relationship. A total of 8442 adults aged 18–70 years were included in this study. After a median follow-up period of 14·7 years, 1007 (11·9 %) deaths occurred including 197 CVD-related deaths, 255 cancer-related deaths and fifty-eight respiratory disease deaths. The participants with HHcy had a 93 % increased risk of all-cause mortality (hazard ratio (HR) 1·93; 95 % CI (1·48, 2·51)), 160 % increased risk of CVD mortality (HR 2·60; 95 % CI (1·52, 4·45)) and 82 % increased risk of cancer mortality (HR 1·82; 95 % CI (1·03, 3·21)) compared with those without HHcy. For unmeasured confounding, E-value analysis proved to be robust. In conclusion, HHcy was associated with high risk of all-cause and cause-specific (CVD, cancer) mortality among adults aged below 70 years.