We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Compacted bentonite, used as an engineering barrier for permanent containment of high-level radioactive waste, is susceptible to mineral evolution resulting in compromise of the expected barrier performance due to alkaline–thermal chemical interaction in the near-field. To elucidate the mineral-evolution mechanisms within bentonite and the transformation of the nuclide adsorption properties during that period, experimental evolution of bentonite was conducted in a NaOH solution with a pH of 14 at temperatures ranging from 60 to 120°C. The results showed that temperature significantly affects the stability of minerals in bentonite under alkali conditions. The dissolution rate of fine-grained cristobalite in bentonite exceeds that of smectite, with the phase-transition products of smectite being temperature-dependent. As the temperature rises, smectite experiences a three-stage transformation: initially, at 60°C, the lattice structure thins due to the collapse of the octahedral sheets; at 80°C, the lattice disintegrates and reorganizes into a loose framework akin to albite; and by 100°C, it further reorganizes into a denser framework resembling analcime. The adsorption properties of bentonite exhibit a peak inflection point at 80°C, where the dissolution of the smectite lattice eliminates interlayer pores and exposes numerous polar or negatively charged sites which results in a decrease in specific surface area and an increase in cation exchange capacity and adsorption capacity of Eu3+. This research provides insights into the intricate evolution of bentonite minerals and the associated changes in radionuclide adsorption capacity, contributing to a better understanding of the stability of bentonite barriers and the effective long-term containment of nuclear waste.
The iron-rich calcareous soil (Typic Rhodustalf) from the Penghu island group represents a volcanic area. The black soils (Typic Haplustert, Vertic Endoaquoll, Typic Hapludolls) are typical of eastern Taiwan. Four A horizons and a pedon from the iron-rich calcareous soil and four pedons from the black soils were studied to analyze soil properties and clay compositions. The objective was to compare the properties of smectites developed from different parent materials. The materials were studied by using conventional X-ray diffraction (XRD) of K- and Mg-saturated clays and involved the alkylam-monium (C = 12) method and the Greene-Kelly test. The mean-layer charge of smectites (0.48–0.52 cmol(c)/O10(OH)2) in the iron-rich calcareous soil was found to be higher than the black soils (0.43–0.48 cmol(c)/O10(OH)2). A smectite of higher charge developed from the basalts. This smectite is enriched in Fe and Mg, and lacks Si, thereby forming beidellite and/or nontronite. In contrast, under high precipitation, elevated temperature, base saturation (e.g., Na, K, Ca, Mg), and about equal wet and dry cycles per year in the black soil environments, smectites developed from the complicated geologic site of eastern Taiwan. These smectites transformed to smectite-kaolinite mixed-layer clay and thus, resulted in lower-charge smectites. The K fixation capacity of the iron-rich calcareous soil was higher than the black soils.
Clay mineral compositions from 2 paleosol profiles (Chu-Wan, CW, and Shiao-Men Yu, SMY, profiles) on the late-Miocene sediments in Penghu Islands (Pescadores), Taiwan, are characterized by random X-ray powder diffraction (XRD) and transmission electron microscopy (TEM). By the clay assemblage of the paleosol profile, we want to explore the probable formation mode of the Penghu paleosols.
The paleosol profiles in study are overlain by a layer of basalt flow. However, the clay mineralogy of the 2 paleosols was not altered metasomatically after burial. Results show that 3 distinctive zones of different dominating kaolin-group minerals are apparent in the profiles. In descending order, they are: 1) spheroidal, hollow 7Å-halloysite, 2) platy, irregular-shaped and disordered kaolinite, and 3) platy, irregular-shaped, disordered kaolinite. The relative crystallinity of kaolin minerals of the 3 layers is: layer 2 > layer 3 > layer 1. On the basis of the XRD, TEM analyses and the crystallinity calculations, the distribution of kaolin in Penghu paleosol profiles appears to be unique. Penghu paleosol profiles show systematic change in kaolin crystallinity and polymorphs with depth. Because the clay type is heterogeneous within the profile, this represents that Penghu paleosol profiles were polypedogenic.
The contact between the upper basalt and the paleosol is the erosion surface, so we do not know exactly what the thickness of the original paleosol was. The first layer (about 20 cm) of the profiles appears to be constituents of the original paleosol. It contains high contents of pedogenic (in situ weathering) hematites and 7Å-halloysites, which implies that the local climate of the Penghu Islands at late Miocene was warm and humid. Intense leaching and dry/wet cycle should be the reason for high contents of halloysite (>60%) in the Penghu paleosols. Laterization was the probable pedogenic process for the formation of the paleosols.
L-aspartic acid was intercalated into layered double hydroxides by coprecipitation. Two types of well crystallized material were obtained and were characterized by powder X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetry, differential thermal analysis and polarimetry. Schematic models of two intercalation structures with different basal spacings are given. It is proved that the optical activity of L-aspartic acid is retained during and after the intercalation process.
Hydrophobicity, swellability, and dispersion are important properties for organo-montmorillonites (OMnt) and have yet to be fully characterized for all OMnt configurations. The purpose of the present work was to examine the preparation of OMnt from the reaction of Ca2+-montmorillonite (Ca2+-Mnt) with a high concentration of surfactant and to reveal the relevant properties of hydrophobicity and dispersion of the resultant OMnt. A series of OMnt samples were prepared using a small amount of water and cetyltrimethylammonium bromide (CTAB) with a concentration more than the CTAB critical micelle concentration (CMC). The relationship between OMnt microstructure and the hydrophobicity and swellability properties was investigated in detail. The resulting OMnt samples were characterized using powder X-ray diffraction patterns (XRD), Fourier-transform infrared (FTIR) spectroscopy, thermogravimetric and differential thermogravimetry (TG-DTG), water contact angle tests, swelling indices, and transmission electron microscopy (TEM). The addition of CTAB and water in the OMnt preparation affected the OMnt microstructure and properties. An increase in CTAB concentration led to a more ordered arrangement of cetyltrimethylammonium (CTA+) cations in the interlayer space of the OMnt and a large amount of CTA+ cations on the outer surfaces of the OMnt. The swelling indices and the water contact angles of OMnt samples depended on the distribution of the CTAB surfactant on OMnt and the orientation of the surfactant hydrophilic groups on the inner and on the outer surfaces of OMnt. A maximum swelling index of 39 mL/g in xylene was achieved with an average water contact angle of 62.0° ± 2.0° when the amount of CTAB added was 2 times the cation exchange capacity (CEC) of Mnt and the lowest water to dry Mnt mass ratio was 3 during the preparation of OMnt samples. The platelets of OMnt aggregated together in xylene by electrostatic attraction and by hydrophobic interactions.
Organo-montmorillonite (OMnt) has wide applications in paints, clay-polymer nanocomposites, biomaterials, etc. In most cases, the dispersibility and swellability of OMnt dictate the performance of OMnt in the target products. Previous studies have revealed that the properties can be improved when multiple organic species are co-introduced into the interlayer space of montmorillonite (Mnt). In the present study, single surfactant erucylamide (EA), dual-surfactants cetyltrimethyl ammonium bromide (CTAB) and octadecyltrimethyl ammonium chloride (OTAC), and ternary-surfactants EA, CTAB, and OTAC were co-introduced into Mnt by solution intercalation. The resulting OMnts were characterized by powder X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, thermogravimetry-differential thermogravimetry (TG-DTG), water contact-angle tests, scanning electronic microscopy (SEM), laser particle-size analysis, and swelling indices. Mnt co-modified by ternary CTAB, OTAC, and EA led to a large d001 value (4.20 nm), surface hydrophobicity with a contact angle of 95.6°, swellability (50 mL/g) with small average particle sizes (2.1−2.8 μm) in xylene, and >99% of the OMnt particles were kept as <5 μm in deionized water. The formation of EA-modified-Mnt was proposed according to hydrophobic affinity, hydrogen bonding, and van der Waals forces. The nanoplatelets of the CTA+, OTA+, and EA co-modified OMnts in xylene were assembled into a house-of-cards structure by face-to-edge and edge-to-edge associations. The electrostatic attractions, electrostatic and steric repulsions, and hydrophobic interactions were responsible for the good dispersibility of OMnt in xylene. The ternary surfactant co-modified OMnt with high dispersion and swellability will make OMnt better suited for real-world applications.
The advent of immersive and interactive technologies has facilitated the growth of the museum and gallery sector by offering a variety of new experiences. In the UK and China, in particular, the museum and gallery sector lies at the heart of the creative industries and makes a significant contribution to cultural growth. Both countries have recognised the impact of such technologies on the growth of the sector and have actively sought opportunities to use them for bilateral collaboration. However, the interest in immersive and interactive technologies among museum and gallery audiences remains underexplored, as do their preferences and behavioural patterns with respect to such technologies. This study discusses the key findings of user research, exploring the awareness, experiences and preferences of current museum and gallery audiences regarding (i) immersive and interactive museum and gallery experiences and (ii) the cultural exchange between the UK and China.
Angiostrongylus cantonensis causes a form of parasitic meningitis in humans. Albendazole (ABZ) kills nematode larvae in the brain. However, dead larvae can trigger a severe inflammatory response, resulting in brain damage. Accumulating evidence suggests that calycosin represents a potential anti-inflammatory therapeutic candidate. In this study, we investigated the combined effects of ABZ and calycosin in angiostrongyliasis caused by A. cantonensis in BALB/c mice. Inflammatory mediators (such as phospho-nuclear factor-κB, cyclooxygenase-2, matrix metalloproteinase-9, tumour necrosis factor-α and interleukin-1β) are associated with the development of meningitis and immune inflammatory reactions. We found that A. cantonensis significantly induces inflammatory mediator production and increases the blood–brain barrier (BBB) permeability. However, co-administration of both ABZ and calycosin markedly suppressed meningitis and inflammatory mediator production and decreased the BBB permeability compared to treatment with a single drug. Furthermore, calycosin and ABZ plus calycosin treatment facilitated production of the antioxidant haem oxygenase-1 (HO-1). Moreover, co-therapy with ABZ and calycosin failed to mitigate angiostrongyliasis in the presence of tin-protoporphyrin IX, an HO-1-specific inhibitor. This finding suggests that the beneficial effects of ABZ plus calycosin treatment on the regulation of inflammation are mediated by the modulation of HO-1 activation. The present results provide new insights into the treatment of human angiostrongyliasis using co-therapy with ABZ and calycosin.
This paper investigates the monolithic edge-cladding process for the elliptical disk of N31-type Nd-doped phosphate laser glass, which will be utilized under liquid cooling conditions for high-power laser systems. The thermal stress, interface bubbles and residual reflectivity, which are due to high-temperature casting and bonding during the monolithic edge-cladding process, are simulated and determined. The applied mould is optimized to a rectangular cavity mould, and the casting temperature is optimized to 1000°C. The resulting lower bubble density makes the mean residual reflectivity as low as 6.75 × 10−5, which is enough to suppress the amplified spontaneous emission generated in the Nd-glass disk, and the resulting maximum optical retardation is converged to 10.2–13.3 nm/cm, which is a favourable base for fine annealing to achieve the stress specification of less than or equal to 5 nm/cm. After fine annealing at the optimized 520°C, the maximum optical retardation is as low as 4.8 nm/cm, and the minimum transmitted wavefront peak-to-valley value is 0.222 wavelength (632.8 nm). An N31 elliptical disk with the size of 194 mm × 102 mm × 40 mm can be successfully cladded by the optimized monolithic edge-cladding process, whose edge-cladded disk with the size of 200 mm × 108 mm × 40 mm can achieve laser gain one-third higher than that of an N21-type disk of the same size.
The risk of environmental contamination by severe acute respiratory coronavirus virus 2 (SARS-CoV-2) in the intensive care unit (ICU) is unclear. We evaluated the extent of environmental contamination in the ICU and correlated this with patient and disease factors, including the impact of different ventilatory modalities.
Methods:
In this observational study, surface environmental samples collected from ICU patient rooms and common areas were tested for SARS-CoV-2 by polymerase chain reaction (PCR). Select samples from the common area were tested by cell culture. Clinical data were collected and correlated to the presence of environmental contamination. Results were compared to historical data from a previous study in general wards.
Results:
In total, 200 samples from 20 patient rooms and 75 samples from common areas and the staff pantry were tested. The results showed that 14 rooms had at least 1 site contaminated, with an overall contamination rate of 14% (28 of 200 samples). Environmental contamination was not associated with day of illness, ventilatory mode, aerosol-generating procedures, or viral load. The frequency of environmental contamination was lower in the ICU than in general ward rooms. Eight samples from the common area were positive, though all were negative on cell culture.
Conclusion:
Environmental contamination in the ICU was lower than in the general wards. The use of mechanical ventilation or high-flow nasal oxygen was not associated with greater surface contamination, supporting their use and safety from an infection control perspective. Transmission risk via environmental surfaces in the ICUs is likely to be low. Nonetheless, infection control practices should be strictly reinforced, and transmission risk via droplet or airborne spread remains.
No studies have reported on how to relieve distress or relax in medical health workers while wearing medical protective equipment in coronavirus disease 2019 (COVID-19) pandemic. The study aimed to establish which relaxation technique, among six, is the most feasible in first-line medical health workers wearing medical protective equipment.
Methods
This was a two-step study collecting data with online surveys. Step 1: 15 first-line medical health workers were trained to use six different relaxation techniques and reported the two most feasible techniques while wearing medical protective equipment. Step 2: the most two feasible relaxation techniques revealed by step 1 were quantitatively tested in a sample of 65 medical health workers in terms of efficacy, no space limitation, no time limitation, no body position requirement, no environment limitation to be done, easiness to learn, simplicity, convenience, practicality, and acceptance.
Results
Kegel exercise and autogenic relaxation were the most feasible techniques according to step 1. In step 2, Kegel exercise outperformed autogenic relaxation on all the 10 dimensions among the 65 participants while wearing medical protective equipment (efficacy: 24 v. 15, no space limitation: 30 v. 4, no time limitation: 31 v. 4, no body position requirement: 26 v. 4, no environment limitation: 30 v. 11, easiness to learn: 28 v. 5, simplicity: 29 v. 7, convenience: 29 v. 4, practicality: 30 v. 14, acceptance: 32 v. 6).
Conclusion
Kegel exercise seems a promising self-relaxation technique for first-line medical health workers while wearing medical protective equipment among COVID-19 pandemic.
In this paper, we use finite element analysis (FEA) to study the linear viscoelastic response of polyurea, a type of hard–soft block copolymer. A Niblack's algorithm-based technique employed on atomic force microscopy images provides geometry inputs for the FEA model, while the viscoelastic master curves of the soft matrix are obtained via a combination of dynamic mechanical analysis data and molecular dynamic (MD) estimations. In this microstructural image-based FEA framework, we introduce an interphase area of altered properties between the hard and soft domains. Both spatial and property distributions of this interphase area affect the viscoelastic response of the copolymer system. To quantitatively investigate the impact of structural and property features of the interphase on the energy storage and dissipation of a system during linear perturbation, we develop a statistical descriptor representation of the interphase region related to physical parameters. Utilizing decision-tree and random forest concepts from machine learning, we apply a ranking algorithm to identify the most significant features for four different mechanical response descriptors. Results show that the total interphase volume fraction and shifting factor distributions in the interphase area dominate the magnitude of the tan δ peak, whereas the magnitudes of the shifting factors primarily affect the tan δ peak location in frequency space. This method allows us to readily identify the dominant features impacting individual properties and paves the way for material design of hard–soft block copolymer systems.
The aim of the present study was to explore the influence of tea consumption on diabetes mellitus in the Chinese population. This multi-centre, cross-sectional study was conducted in eight sites from south, east, north, west and middle regions in China by enrolling 12 017 subjects aged 20–70 years. Socio-demographic and general information was collected by a standardised questionnaire. A standard procedure was used to measure anthropometric characteristics and to obtain blood samples. The diagnosis of diabetes was determined using a standard 75-g oral glucose tolerance test. In the final analysis, 10 825 participants were included and multiple logistic models and interaction effect analysis were applied for assessing the association between tea drinking with diabetes. Compared with non-tea drinkers, the multivariable-adjusted OR for newly diagnosed diabetes were 0·80 (95 % CI 0·67, 0·97), 0·88 (95 % CI 0·71, 1·09) and 0·86 (95 % CI 0·67, 1·11) for daily tea drinkers, occasional tea drinkers and seldom tea drinkers, respectively. Furthermore, drinking tea daily was related to decreased risk of diabetes in females by 32 %, elderly (>45 years) by 24 % and obese (BMI > 30 kg/m2) by 34 %. Moreover, drinking dark tea was associated with reduced risk of diabetes by 45 % (OR 0·55; 95 % CI 0·42, 0·72; P < 0·01). The results imply that drinking tea daily was negatively related to risk of diabetes in female, elderly and obese people. In addition, drinking dark tea was associated with decreased risk of type 2 diabetes mellitus.
The microbiota–gut–brain axis, especially the microbial tryptophan (Trp) biosynthesis and metabolism pathway (MiTBamp), may play a critical role in the pathogenesis of major depressive disorder (MDD). However, studies on the MiTBamp in MDD are lacking. The aim of the present study was to analyze the gut microbiota composition and the MiTBamp in MDD patients.
Methods
We performed shotgun metagenomic sequencing of stool samples from 26 MDD patients and 29 healthy controls (HCs). In addition to the microbiota community and the MiTBamp analyses, we also built a classification based on the Random Forests (RF) and Boruta algorithm to identify the gut microbiota as biomarkers for MDD.
Results
The Bacteroidetes abundance was strongly reduced whereas that of Actinobacteria was significantly increased in the MDD patients compared with the abundance in the HCs. Most noteworthy, the MDD patients had increased levels of Bifidobacterium, which is commonly used as a probiotic. Four Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologies (KOs) (K01817, K11358, K01626, K01667) abundances in the MiTBamp were significantly lower in the MDD group. Furthermore, we found a negative correlation between the K01626 abundance and the HAMD scores in the MDD group. Finally, RF classification at the genus level can achieve an area under the receiver operating characteristic curve of 0.890.
Conclusions
The present findings enabled a better understanding of the changes in gut microbiota and the related Trp pathway in MDD. Alterations of the gut microbiota may have the potential as biomarkers for distinguishing MDD patients form HCs.
Knowledge is a crucial factor in state-of-the-art product development. It is often provided by stakeholders from divers disciplinary and individual backgrounds and has to be integrated to create competitive products. Still, it is not fully understood, how knowledge is generated, transformed, transferred and integrated in complex product development processes. To investigate the dynamic interrelations between involved stakeholders, applied knowledge types and related artefacts, researchers at the TU Berlin conducted and evaluated a student experiment to study basic phenomena of development projects. In relation to research methods and instruments applied in this experiment, various improvement opportunities were identified. In this paper, the experimental setting and its results are critically analysed from a social science perspective in order to generate improved research design. Based on the results of this analysis, a first set of methods and instruments from social sciences are identified that can be applied in further experiments. The goal is to develop a methodological toolbox that can be used to approach research on knowledge dynamics in product development.
The preparation of three-dimensional honeycomb nitrogen-doped carbon materials (3D-HNCMs) which can be used as electrode materials for supercapacitors is reported. The composites with the 3D honeycomb structure exhibited better electrochemical performance, and the structure and properties were proved by various means, such as SEM, TEM, IR, N2 sorption, XRD and XPS. Used as electrode materials for supercapacitors in the KOH electrolyte, 3D-HNCMs displayed a significantly high specific capacitance (409 F/g at a current of 0.5 A/g). Moreover, the 3D-HNCM electrode exhibited superior electrochemical performance, such as excellent cycling stability (98% capacitance retention after 10,000 cycles), a maximum energy density of 15.37 W h/kg, a maximum power density of 40.3 kW/kg, and low equivalent series resistance (2.1 Ω). Particularly, the electrochemical characteristic of 3D-HNCMs could be attributed to the synergistic effect of a high surface area, unique microporous and mesoporous structure, and nitrogen atom doping. These carbon materials with unique structure are promising electrode materials for future supercapacitor application.
This study investigated the prevalence and characteristics of schizophrenia in patients with type 2 diabetes mellitus (T2DM) in Taiwan.
Methods:
National Health Insurance claims data for patients with principal diagnoses of schizophrenia and T2DM were analysed.
Results:
Compared with patients with schizophrenia in the general population (GP), those with schizophrenia and T2DM were more likely to have higher Charlson comorbidity index (CCI) scores and multiple comorbidities, and were older. The prevalence of schizophrenia was significantly higher in patients with T2DM than in the GP from 2000 to 2010. In addition, during this period, the prevalence of schizophrenia in patients with T2DM increased from 0.64% to 0.85%; such an increase in the GP was also observed. A high prevalence of schizophrenia was observed in patients with T2DM aged less than 60 years old; those residing in eastern Taiwan; those with incomes of ≤NT$17,280, NT$17,281–NT$22,880, NT$22,881–NT$28,800, and NT$36,301–NT$45,800; and those with CCI > 2.
Conclusions:
Our study found the prevalence of schizophrenia is higher in patients with T2DM than in the GP, particularly those with earlier ages less than 60 years old. Public health initiatives are necessary to prevent and treat schizophrenia in patients with T2DM, specifically for those with the aforementioned and premature death risk.
The hydrogen concentration and composition of garnets in the ultrahigh pressure eclogites at Shuanghe, eastern Dabieshan, were investigated using Fourier transform infrared spectroscopy and electron microprobe analysis. The OH absorption bands can be divided into four groups: (1) 3635–3655 cm–1; (2) 3600–3630 cm–1; (3) 3540–3580 cm–1; and (4) 3400–3450 cm–1 and the water content ranges from 45 to 2529 ppm. Based on the behaviour of the OH absorption band and the relationship between water content and the composition of garnets, the samples can be divided into two classes: samples with >400 ppm H2O and samples with ≤400 ppm H2O. The water content of the former shows an obvious positive correlation with Ca atoms and a negative correlation with the Si, Mg and Fe2+ atoms per 12 anions, whereas the water content of the latter shows no obvious linear correlation with cations. It is concluded that the major mechanism of hydroxyl incorporation in garnets with >400 ppm H2O is by the coupled substitution 4H +Z□ → □+ZSi in the tetrahedral site, and that several mechanisms are responsible for OH incorporation in garnets with ≤400 ppm H2O.
An efficient algorithm is proposed for the radar cross-section (RCS) prediction of complex target with electronically large size, which is a combination of geometrical optics and physical optics (GO–PO) method. The method taking the multiple reflections into account is applied to the electromagnetic scattering analysis of a satellite model. Then RCS curves of entire satellite model and the model without antenna structure are figured out. Based on the simulated echoes, the traditional inverse synthetic aperture radar (ISAR) images are discussed. Moreover, an application of motion compensation technique based on the joint time-frequency analysis is presented for ISAR imaging of the moving satellite that has both translational and rotational movements. Numerical results show good performance of GO–PO method in accuracy and efficiency and the great influence of the antenna with corner structures on the scattering characteristic of the satellite.
To evaluate the effects of different anthropogenic activities on zooplankton and the pelagic ecosystem, we conducted seasonal cruises in 2010 to assess spatial heterogeneity among the mesozooplankton communities of Xiangshan Bay, a subtropical semi-enclosed bay in China. The evaluation included five different areas: a kelp farm, an oyster farm, a fish farm, the thermal discharge area of a power plant, and an artificial reef, and we aimed to identify whether anthropogenic activities dominated spatial variation in the mesozooplankton communities. The results demonstrated clear spatial heterogeneity among the mesozooplankton communities of the studied areas, dominantly driven by natural hydrographic properties, except in the area near the thermal discharge outlet of the power station. In the outlet area, thermal shock caused by the discharge influenced the mesozooplankton community by decreasing abundance and biomass throughout the four seasons, even causing a shift in the dominant species near the outlet during summer from Acartia pacifica to eurythermal and warm water taxa. Unique features of the mesozooplankton community in the oyster farm may be due to the combined effects of oyster culture and the natural environment in the branch harbour. However, kelp and fish culture, and the construction of an artificial reef did not exert any obvious influence on the mesozooplankton communities up to 2010, probably because of the small scale of the aquaculture and a time lag in the rehabilitation effects of the artificial reef. Thus, our results suggested that the dominant factors influencing spatial variations of mesozooplankton communities in Xiangshan Bay were still the natural hydrographic properties, but the thermal discharge was an anthropogenic activity that changed the pelagic ecosystem, and should be supervised.