We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
About a fourth of Chinese adolescents developed clinically significant depressive symptoms following a disaster. However, little is known about whether and how post-trauma negative life events and a sense of security are associated with depressive symptoms in this population. This study examined the psychological experiences of Chinese young people who had experienced the 2013 Ya’an earthquake in Sichuan, China.
Methods:
This cross-sectional study was conducted in 2019. A total of 693 Chinese middle school students completed a questionnaire that measured their level of depressive symptoms, trauma exposure, stressful life events, and sense of security.
Results:
Results of hierarchical multiple-regression analyses showed that the level of life stress from stressful life events was positively associated with the level of depressive symptoms (β = 0.416, P < 0.001) and the level of the sense of security was negatively associated with the level of depressive symptoms (β = −0.352, P < 0.001) when analysis controlled for age, gender, and trauma exposure.
Conclusions:
These findings highlight the importance of considering the influence of life stressors and the sense of security in devising measures and strategies for the prevention of the manifestation of depression among young people, particularly those who were exposed to disasters.
We report a systematic experimental study of the mean temperature profile $\theta (\delta z)$ and temperature variance profile $\eta (\delta z)$ across a stable and immiscible liquid–liquid (water–FC770) interface formed in two-layer turbulent Rayleigh–Bénard convection. The measured $\theta (\delta z)$ and $\eta (\delta z)$ as a function of distance $\delta z$ away from the interface for different Rayleigh numbers are found to have the scaling forms $\theta (\delta z/\lambda )$ and $\eta (\delta z/\lambda )$, respectively, with varying thermal boundary layer (BL) thickness $\lambda$. By a careful comparison with the simultaneously measured BL profiles near a solid conducting surface, we find that the measured $\theta (\delta z)$ and $\eta (\delta z)$ near the liquid interface can be well described by the BL equations for a solid wall, so long as a thermal slip length $\ell _T$ is introduced to account for the convective heat flux passing through the liquid interface. Direct numerical simulation results further confirm that the turbulent thermal diffusivity $\kappa _t$ near a stable liquid interface has a complete cubic form, $\kappa _t(\xi )/\kappa \sim (\xi +\xi _0)^3$, where $\kappa$ is the molecular thermal diffusivity of the convecting fluid, $\xi =\delta z/\lambda$ is the normalized distance away from the liquid interface and $\xi _0$ is the normalized slip length associated with $\ell _T$.
Adolescence is a significant period for the formation of relationship networks and the development of internalizing problems. With a sample of Chinese adolescents (N = 3,834, 52.01% girls, Mage = 16.68 at Wave 1), the present study aimed to identify the configuration of adolescents’ relationship qualities from four important domains (i.e., relationship quality with mother, father, peers, and teachers) and how distinct profiles were associated with the development of internalizing problems (indicated by depressive and anxiety symptoms) across high school years. Latent profile analysis identified a five-profile configuration with four convergent profiles (i.e., relationship qualities with others were generally good or bad) and one “Father estrangement” profile (i.e., the relationship quality with others were relatively good but that with father was particularly poor). Further conditional latent growth curve analysis indicated the “Father estrangement” profile was especially vulnerable to an increase in the internalizing problems as compared with other relationship profiles. This study contributes to understanding the characteristics of interpersonal relationship qualities and their influences on adolescent internalizing problems in a non-Western context. Results were further discussed from a culturally specific perspective.
In this study, we investigate the differences between two transient, three-dimensional, thermomechanically coupled ice-sheet models, namely, a first-order approximation model (FOM) and a ‘full’ Stokes ice-sheet model (FSM) under the same numerical framework. For all numerical experiments, we take the FSM outputs as the reference values and calculate the mean relative errors in the velocity and temperature fields for the FOM over 100 years. Four different boundary conditions (ice slope, geothermal heat flux, basal topography and basal sliding) are tested, and by changing these parameters, we verify the thermomechanical behavior of the FOM and discover that the velocity and temperature biases of the FOM generally increase with increases in the ice slope, geothermal heat flux, undulation amplitude of the ice base, and with the existence of basal sliding. In addition, the model difference between the FOM and FSM may accumulate over time, and the spatial distribution patterns of the relative velocity and temperature errors are in good agreement.
COVID-19 has long-term impacts on public mental health, while few research studies incorporate multidimensional methods to thoroughly characterise the psychological profile of general population and little detailed guidance exists for mental health management during the pandemic. This research aims to capture long-term psychological profile of general population following COVID-19 by integrating trajectory modelling approaches, latent trajectory pattern identification and network analyses.
Methods
Longitudinal data were collected from a nationwide sample of 18 804 adults in 12 months after COVID-19 outbreak in China. Patient Health Questionnaire-9, Generalised Anxiety Disorder-7 and Insomnia Severity Index were used to measure depression, anxiety and insomnia, respectively. The unconditional and conditional latent growth curve models were fitted to investigate trajectories and long-term predictors for psychological symptoms. We employed latent growth mixture model to identify the major psychological symptom trajectory patterns, and ran sparse Gaussian graphical models with graphical lasso to explore the evolution of psychopathological network.
Results
At 12 months after COVID-19 outbreak, psychological symptoms generally alleviated, and five psychological symptom trajectories with different demographics were identified: normal stable (63.4%), mild stable (15.3%), mild-increase to decrease (11.7%), mild-decrease to increase (4.0%) and moderate/severe stable (5.5%). The finding indicated that there were still about 5% individuals showing consistently severe distress and approximately 16% following fluctuating psychological trajectories, who should be continuously monitored. For individuals with persistently severe trajectories and those with fluctuating trajectories, central or bridge symptoms in the network were mainly ‘motor abnormality’ and ‘sad mood’, respectively. Compared with initial peak and late COVID-19 phase, aftermath of initial peak might be a psychologically vulnerable period with highest network connectivity. The central and bridge symptoms for aftermath of initial peak (‘appetite change’ and ‘trouble of relaxing’) were totally different from those at other pandemic phases (‘sad mood’).
Conclusions
This research identified the overall growing trend, long-term predictors, trajectory classes and evolutionary pattern of psychopathological network of psychological symptoms in 12 months after COVID-19 outbreak. It provides a multidimensional long-term psychological profile of the general population after COVID-19 outbreak, and accentuates the essentiality of continuous psychological monitoring, as well as population- and time-specific psychological management after COVID-19. We believe our findings can offer reference for long-term psychological management after pandemics.
In this study, a toroidal quartz (
$20\overline{2}3$
) crystal is designed for monochromatic X-ray imaging at 72.3°. The designed crystal produces excellent images of a laser-produced plasma emitting He-like Ti X-rays at 4.75 keV. Based on the simulations, the imaging resolutions of the spherical and toroidal crystals in the sagittal direction are found to be 15 and 5 μm, respectively. Moreover, the simulation results show that a higher resolution image of the source can be obtained by using a toroidal crystal. An X-ray backlight imaging experiment is conducted using 4.75 keV He-like Ti X-rays, a 3 × 3 metal grid, an imaging plate and a toroidal quartz crystal with a lattice constant of 2d = 0.2749 nm. The meridional and sagittal radii of the toroidal α-quartz crystal are 295.6 and 268.5 mm, respectively. A highly resolved image of the microgrid, with a spatial resolution of 10 μm, is obtained in the experiment. By using similar toroidal crystal designs, the application of a spatially resolved spectrometer with high-resolution X-ray imaging ability is capable of providing imaging data with the same magnification ratio in the sagittal and meridional planes.
The subduction model of the Neo-Tethys during the Early Cretaceous has always been a controversial topic, and the scarcity of Early Cretaceous magmatic rocks in the southern part of the Gangdese batholith is the main cause of this debate. To address this issue, this article presents new zircon U–Pb chronology, zircon Hf isotope, whole-rock geochemistry and Sr–Nd isotope data for the Early Cretaceous quartz diorite dykes with adakite affinity in Liuqiong, Gongga. Zircon U–Pb dating of three samples yielded ages of c. 141–137 Ma, indicating that the Liuqiong quartz diorite was emplaced in the Early Cretaceous. The whole-rock geochemical analysis shows that the Liuqiong quartz diorite is enriched in large-ion lithophile elements (LILEs) and light rare-earth elements (LREEs) and is depleted in high-field-strength elements (HFSEs), which are related to slab subduction. Additionally, the Liuqiong quartz diorite has high SiO2, Al2O3 and Sr contents, high Sr/Y ratios and low heavy rare-earth element (HREE) and Y contents, which are compatible with typical adakite signatures. The initial 87Sr/86Sr values of the Liuqiong adakite range from 0.705617 to 0.705853, and the whole-rock ϵNd(t) values vary between +5.78 and +6.24. The zircon ϵHf(t) values vary from +11.5 to +16.4. Our results show that the Liuqiong adakite magma was derived from partial melting of the Neo-Tethyan oceanic plate (mid-ocean ridge basalt (MORB) + sediment + fluid), with some degree of subsequent peridotite interaction within the overlying mantle wedge. Combining regional data, we favour the interpretation that the Neo-Tethyan oceanic crust was subducted at a low angle beneath the Gangdese during the Early Cretaceous.
We report a systematic study of the collective effect of thermal plumes on the probability density function (p.d.f.) $P(\delta T)$ of temperature fluctuations $\delta T(t)$ in turbulent Rayleigh–Bénard convection. By decomposing $\delta T(t)$ into four basic fluctuation modes associated with single and multiple warm and cold plumes and a turbulent background, we derive an analytic form of $P(\delta T)$ based on the convolutions of the five independent modes. To test the derived form of $P(\delta T)$ in the multiple-plume regions, where the thermal plumes are heavily populated, we conduct time series measurements of temperature fluctuations in two convection cells; one is a vertical thin disk and the other is an upright cylinder of aspect ratio unity. For a given normalized position in most regions of the convection cell, all of the measured p.d.f.s $P(\delta T)$ for different Rayleigh numbers fall onto a single master curve, once $\delta T$ is normalized by its root-mean-square (r.m.s.) value $\sigma _T$. It is found that the measured $P(\delta T/\sigma _T)$ at different locations along the symmetric horizontal and vertical axes of the convection cells can all be well described by the derived form of $P(\delta T/\sigma _T)$. The fitted values of the parameters associated with the number of plumes in multiple plume clusters and their relative strengths and degrees of intermittency are closely linked to the spatial distribution of thermal plumes and local dynamics of the large-scale circulation in a closed convection cell. Our work thus provides a unified theoretical approach for understanding scalar p.d.f.s in a turbulent field, which is very useful not only for the present study but also for the study of many turbulent mixing problems of practical interest.
Three-scalar subgrid-scale (SGS) mixing in turbulent coaxial jets is investigated experimentally. The flow consists of a centre jet, an annulus and a co-flow. The SGS mixing process and its dependence on the velocity and length scale ratios of the annulus flow to the centre jet are investigated. For small SGS scalar variance the scalars are well mixed and the initial three-scalar mixing configuration is lost. For large SGS variance, the scalars are highly segregated with a bimodal scalar filtered joint density function (f.j.d.f.) at a range of radial locations. Two competing factors, the SGS variance and the scalar length scale, play an important role for the bimodal f.j.d.f. For the higher velocity ratio cases, the peak value of the SGS variance is higher, thereby resulting in stronger bimodality. For the lower velocity ratio cases, the wider mean SGS variance profiles and the smaller scalar length scale cause bimodal f.j.d.f.s over a wider range of physical locations. The scalar dissipation rate structures have similarities to those of mixture fraction and temperature in turbulent non-premixed/partially premixed flames. The observed SGS mixing characteristics present a challenging test for SGS mixing models as well as provides an understanding of the physics for developing improved models. The results also provide a basis for investigating multiscalar SGS mixing in turbulent reactive flows.
We report a direct numerical simulation (DNS) study of the mean velocity and temperature profiles in turbulent Rayleigh–Bénard convection (RBC) at low Prandtl numbers ($Pr$). The numerical study is conducted in a vertical thin disk with $Pr$ varied in the range $0.17\leq Pr\leq 4.4$ and the Rayleigh number ($Ra$) varied in the range $5\times 10^8\leq Ra \leq 1\times 10^{10}$. By varying $Pr$ from 4.4 to 0.17, we find a sharp change of flow patterns for the large-scale circulation (LSC) from a rigid-body rotation to a near-wall turbulent jet. We numerically examine the mean velocity equation in the bulk region and find that the mean horizontal velocity profile $u(z)$ can be determined by a balance equation between the mean convection and turbulent diffusion with a constant turbulent viscosity $\nu _t$. This balance equation admits a self-similarity jet solution, which fits the DNS data well. In the boundary-layer region, we find that both the mean temperature profile $T(z)$ and $u(z)$ can be determined by a balance equation between the molecular diffusion and turbulent diffusion. Within the viscous boundary layer, both $u(z)$ and $T(z)$ can be solved analytically and the analytical results agree well with the DNS data. Our careful characterisation of the mean velocity and temperature profiles in low-$Pr$ RBC provides a further understanding of the intricate interplay between the LSC, plume emission and boundary-layer dynamics, and pinpoints the physical mechanism for the emergence of a pronounced LSC in low-$Pr$ RBC.
N6-Methyladenosine (m6A) regulates oocyte-to-embryo transition and the reprogramming of somatic cells into induced pluripotent stem cells. However, the role of m6A methylation in porcine early embryonic development and its reprogramming characteristics in somatic cell nuclear transfer (SCNT) embryos are yet to be known. Here, we showed that m6A methylation was essential for normal early embryonic development and its aberrant reprogramming in SCNT embryos. We identified a persistent occurrence of m6A methylation in embryos between 1-cell to blastocyst stages and m6A levels abruptly increased during the morula-to-blastocyst transition. Cycloleucine (methylation inhibitor, 20 mM) treatment efficiently reduced m6A levels, significantly decreased the rates of 4-cell embryos and blastocysts, and disrupted normal lineage allocation. Moreover, cycloleucine treatment also led to higher levels in both apoptosis and autophagy in blastocysts. Furthermore, m6A levels in SCNT embryos at the 4-cell and 8-cell stages were significantly lower than that in parthenogenetic activation (PA) embryos, suggesting an abnormal reprogramming of m6A methylation in SCNT embryos. Correspondingly, expression levels of m6A writers (METTL3 and METTL14) and eraser (FTO) were apparently higher in SCNT 8-cell embryos compared with their PA counterparts. Taken together, these results indicated that aberrant nuclear transfer-mediated reprogramming of m6A methylation was involved in regulating porcine early embryonic development.
Poor utilisation efficiency of carbohydrate always leads to metabolic phenotypes in fish. The intestinal microbiota plays an important role in carbohydrate degradation. Whether the intestinal bacteria could alleviate high-carbohydrate diet (HCD)-induced metabolic phenotypes in fish remains unknown. Here, a strain affiliated to Bacillus amyloliquefaciens was isolated from the intestine of Nile tilapia. A basal diet (CON), HCD or HCD supplemented with B. amy SS1 (HCB) was used to feed fish for 10 weeks. The beneficial effects of B. amy SS1 on weight gain and protein accumulation were observed. Fasting glucose and lipid deposition were decreased in the HCB group compared with the HCD group. High-throughput sequencing showed that the abundance of acetate-producing bacteria was increased in the HCB group relative to the HCD group. Gas chromatographic analysis indicated that the concentration of intestinal acetate was increased dramatically in the HCB group compared with that in the HCD group. Glucagon-like peptide-1 was also increased in the intestine and serum of the HCB group. Thus, fish were fed with HCD, HCD supplemented with sodium acetate at 900 mg/kg (HLA), 1800 mg/kg (HMA) or 3600 mg/kg (HHA) diet for 8 weeks, and the HMA and HHA groups mirrored the effects of B. amy SS1. This study revealed that B. amy SS1 could alleviate the metabolic phenotypes caused by HCD by enriching acetate-producing bacteria in fish intestines. Regulating the intestinal microbiota and their metabolites might represent a powerful strategy for fish nutrition modulation and health maintenance in future.
Social interaction in the twenty-first century involves dynamic use of multilingual and multimodal semiotic resources and is often characterized by the transient, momentary occurrence of creative features. This chapter aims to present Translanguaging as an analytical framework for such dynamic use and creative features in social interaction. The chapter begins with an outline of the diverse phenomena of dynamic and creative practices involving multiple languages and multimodal semiotic resources. Special attention is paid to new media mediated interaction. The characteristics of such practices are identified and discussed. And theoretical issues such as temporality and momentarity are addressed. The chapter then reviews the various analytic concepts, frameworks and approaches that may help to understand these practices, their characteristics and the theoretical issues herein. It focuses specifically on those that have the capacity to offer new insights into the dynamics at the interface of the temporal and spatial dimensions of human social interaction and the creativity of multilingual language users. Perspectives from social semiotics and multimodality, as well as the traditional sociolinguistic and discourse analytic approaches are included. Thus, concepts such as creativity and criticality are also critiqued. The theoretical motivations for the translanguaging perspective and the methodological implications of adopting such a perspective are then discussed and highlighted. It aims to show the added value of translanguaging as an analytic framework for social interaction in the linguistically and culturally diverse world today.
The construction of halloysite spherical capsules (halloysite aerogels) was reported for the first time in our previous work. The excellent performance of the microcapsule in functional carrying was also found in our further research. In this work, the anti-icing surface was fabricated by using halloysite nanotubes and halloysite spherical microcapsules. The fabrication of the anti-icing coating was investigated, and the ice nucleation behavior of droplet on the coating surface was studied. The modified halloysite nanotubes (F-HNTs) and the modified halloysite microcapsules (F-HAs) were characterized by Fourier-transform infrared spectroscopy, thermal gravimetric, and pore size distribution. The results show that the introduction of F-HNTs and F-HAs have successfully formed a micro-nano structure on the coating surface with superhydrophobicity performance. The icing temperature of the coating has decreased 2.3 °C compared with bare glass, and the ice adhesion strength has decreased 82%. According to the ice dynamic mechanics, the ice nucleation rate on the coating is significantly reduced, thus the halloysite microcapsule coating has good icephobic performance.
Fullerene dimers have attracted extensive attention due to their unique structures and fascinating properties. Here, fullerene dimer derivatives with four to six carbon atoms in the esters are designed and synthesized. The property differences that caused by the carbon number in the esters of the fullerene dimers are investigated by performing their electrochemical, optical, and photoelectric measurements. As the carbon atom numbers in the esters increase from four to five and six, the absorption intensities increase to 1.6- and 4.4-folds. The intensities of the fluorescence spectra increase to 1.8- and 5.2-folds. Their photocurrent increases to 2- and 7-folds under the irradiation of a 405-nm laser. The LUMO energy levels move downward slightly from −3.89 to −3.90 and −3.92 eV, respectively. Our results indicate that as the carbon number increases, the carbon chain lengths in the ester structures increase, very slight effects produced on the energy levels of the fullerene dimers, but strongly contribute to their chemical activities and thus the photoelectronic efficiencies.
Hypertrophic cardiomyopathy is an autosomal dominant hereditary disease characterised by left ventricular asymmetry hypertrophy. However, our knowledge of the genetic background in hypertrophic cardiomyopathy cases is limited. Here, we aimed to evaluate pathogenic gene mutations in a family with high-risk hypertrophic cardiomyopathy and analyse the genotype/phenotype relationships in this family.
Methods:
The proband, her parents, and her niece underwent whole-exome sequencing, and the genotypes of family members were identified using Sanger sequencing. mRNA expression was detected using reverse transcription sequencing. Structural impairments were predicted by homologous modelling. A family survey was conducted for patients with positive results to obtain information on general clinical symptoms, electrocardiography, ambulatory electrocardiography, echocardiography, and 3.0T cardiac magnetic resonance findings. Regular follow-up was performed for up to 6 months.
Results:
Five family members, including the proband, carried a cleavage site mutation in the MYBPC3 gene (c.2737+1 (IVS26) G>T), causing exon 26 of the MYBPC3 gene transcript to be skipped and leading to truncation of cardiac myosin-binding protein C. Family survey showed that the earliest onset age was 13 years old, and three people had died suddenly at less than 40 years old. Three pathogenic gene carriers were diagnosed with hypertrophic cardiomyopathy, and all showed severe ventricular septal hypertrophy.
Conclusion:
The c.2737+1 (IVS26) G>T mutation in the MYBPC3 gene led to exon 26 skipping, thereby affecting the structure and function of cardiac myosin-binding protein C and leading to severe ventricular hypertrophy and sudden death.
While assessing the environmental impact of nuclear power plants, researchers have focused their attention on radiocarbon (14C) owing to its high mobility in the environment and important radiological impact on human beings. The 10 MW high-temperature gas-cooled reactor (HTR-10) is the first pebble-bed gas-cooled test reactor in China that adopted helium as primary coolant and graphite spheres containing tristructural-isotropic (TRISO) coated particles as fuel elements. A series of experiments on the 14C source terms in HTR-10 was conducted: (1) measurement of the specific activity and distribution of typical nuclides in the irradiated graphite spheres from the core, (2) measurement of the activity concentration of 14C in the primary coolant, and (3) measurement of the amount of 14C discharged in the effluent from the stack. All experimental data on 14C available for HTR-10 were summarized and analyzed using theoretical calculations. A sensitivity study on the total porosity, open porosity, and percentage of closed pores that became open after irradiating the matrix graphite was performed to illustrate their effects on the activity concentration of 14C in the primary coolant and activity amount of 14C in various deduction routes.
The very high temperature reactor (VHTR) is a development of the high-temperature gas-cooled reactors (HTGRs) and one of the six proposed Generation IV reactor concept candidates. The 10 MW high temperature gas-cooled reactor (HTR-10) is the first pebble-bed gas-cooled test reactor in China. A sampling system for the measurement of carbon-14 (14C) was established in the helium purification system of the HTR-10 primary loop, which could sample 14C from the coolant at three locations. The results showed that activity concentration of 14C in the HTR-10 primary coolant was 1.2(1) × 102 Bq/m3 (STP). The production mechanisms, distribution characteristics, reduction routes, and release types of 14C in HTR-10 were analyzed and discussed. A theoretical model was built to calculate the amount of 14C in the core of HTR-10 and its concentration in the primary coolant. The activation reaction of 13C has been identified to be the dominant 14C source in the core, whereas in the primary coolant, it is the activation of 14N. These results can supplement important information for the source term analysis of 14C in HTR-10 and promote the study of 14C in HTGRs.