We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In the present study, we investigated the influence of different mid-stage N compensation timings on agronomic and physiological traits associated with grain yield and quality in field experiments. Two japonica rice cultivars with a good tasting quality (Nangeng 9108 and Nangeng 5055) were examined under eight N compensation timings (N1–N6: one-time N compensation at 7-2 weeks before heading; N7: split N compensation at 5 and 3 weeks before heading; N8: split N compensation at 4 and 2 weeks before heading) and a control with no N compensation. The highest yield was obtained with N7, followed by N3. The yield advantage is mainly attributable to the improved population structure (higher productive tiller rate with a stable number of effective panicles), higher total number of spikelets per unit area (large panicles with more grains per panicle), larger leaf area index in the late period and higher photosynthetic production capacity (more dry matter accumulation and transportation in the middle and late periods). Delaying N compensation timing improved the processing and nutritional quality of rice, but decreased the quality of appearance and cooking/eating traits. Our results suggest that, from the perspective of achieving relative coordination between high yield and high quality of japonica rice, the optimal N compensation should be divided equally at 5 and 3 weeks before heading. However, if simplifying the number of operations and the pursuit of eating quality were considered, one-time N compensation should be conducted at 5 weeks before heading.
We presented the first photometric and orbital period investigations for four W Ursae Majoris-type binaries: V473 And, V805 And, LQ Com, and EG CVn. The photometric solutions suggested that V805 And and LQ Com are two total-eclipse contact binaries, while V473 And and EG CVn are partial-eclipse ones. V473 And and LQ Com belong to the A-subtype contact binaries, while V805 And and EG CVn belong to the W subtype. The O’Connell effects found in the light curves of V805 And, LQ Com, and EG CVn can be interpreted as a result of a cool spot on the surface of their less massive and hotter primary components. Based on two different methods, the absolute physical parameters were properly determined. Combining the eclipse timings derived from our observations and survey’s data with those collected from literature, we investigated their orbital period variations. The results show that the orbital periods of V473 And, V805 And, and EG CVn are undergoing a secular decrease/increase superposed a periodic variation, while LQ Com exhibits a possible cyclic period variation with a small amplitude. The secular period changes are caused mainly by the mass transfer between two components, while the cyclic period oscillations may be interpreted as the results of either the light-time effect due to the third body or the cyclic magnetic activity. Finally, we made a statistical investigation for nearly 200 contact binaries with reliable physical parameters. The statistical results suggested that the W-subtype systems are more evolved than the A-subtype ones. Furthermore, the evolutionary direction of A-subtype into W-subtype systems is also discussed. The opposite evolutionary direction seems to be unlikely because it requires an increase of the total mass, the orbital angular momentum, and the temperature differences between two components of a binary system.
Caregiver-mediated intervention (CMI), based on parent skills training, is a family-mediated intervention model for children with neurodevelopmental disorders, in particular autism spectrum disorder. This study aimed to evaluate the effectiveness of CMI.
Methods:
Thirty-three children (aged 22–69 months from our department) and their caregivers participated in a two-week training course of ten 90-minute lessons. Caregivers were encouraged to try their best to apply intervention skills in both home routines and play routines to encourage the development of cognition, motion, social adaptability, and behavior of children. Demographic information, video-recorded data, and diagnostic scales were collected at two key time points: baseline and post-training (PT – within six months).
Results:
Three aspects were assessed – primary variables, secondary variables, and correlation analyses. Results showed an improvement in PT in (1) Adult/Child Interaction Fidelity Rating (P < 0.01) and (2) adaptability of Gesell Developmental Scale and stereotyped behaviors and limited interests of Autism Diagnostic Observation Schedule (P < 0.05, P < 0.01). Moreover, a negative correlation occurred between caregiver skill improvement and parent education (P < 0.05), but without correlations with other demographics.
Conclusions:
As an efficacious family intervention for both children and their caregivers, CMI is worth being generalized widely.
The aging population is now a global challenge, and impaired walking ability is a common feature in the elderly. In addition, some occupations such as military and relief workers require extra physical help to perform tasks efficiently. Robotic hip exoskeletons can support ambulatory functions in the elderly and augment human performance in healthy people during normal walking and loaded walking by providing assistive torque. In this review, the current development of robotic hip exoskeletons is presented. In addition, the framework of actuation joints and the high-level control strategy (including the sensors and data collection, the way to recognize gait phase, the algorithms to generate the assist torque) are described. The exoskeleton prototypes proposed by researchers in recent years are organized to benefit the related fields realizing the limitations of the available robotic hip exoskeletons, therefore, this work tends to be an influential factor with a better understanding of the development and state-of-the-art technology.
Hyperhomocysteinaemia (HHcy) is associated with all-cause mortality in some disease states. However, the correlation between HHcy and the risk of mortality in the general population has rarely been researched. We aimed to evaluate the association between HHcy and all-cause and cause-specific mortality among adults in the USA. This study analysed data from the National Health and Nutrition Examination Survey database (1999–2002 survey cycle). A multivariable Cox regression model was built to evaluate the correlation between HHcy and all-cause and cause-specific mortality. Smooth curve fitting was used to analyse their dose-dependent relationship. A total of 8442 adults aged 18–70 years were included in this study. After a median follow-up period of 14·7 years, 1007 (11·9 %) deaths occurred including 197 CVD-related deaths, 255 cancer-related deaths and fifty-eight respiratory disease deaths. The participants with HHcy had a 93 % increased risk of all-cause mortality (hazard ratio (HR) 1·93; 95 % CI (1·48, 2·51)), 160 % increased risk of CVD mortality (HR 2·60; 95 % CI (1·52, 4·45)) and 82 % increased risk of cancer mortality (HR 1·82; 95 % CI (1·03, 3·21)) compared with those without HHcy. For unmeasured confounding, E-value analysis proved to be robust. In conclusion, HHcy was associated with high risk of all-cause and cause-specific (CVD, cancer) mortality among adults aged below 70 years.
Pregnancy is a complex biological process. The establishment and maintenance of foetal–maternal interface are pivotal events. Decidual immune cells and inflammatory cytokines play indispensable roles in the foetal–maternal interface. The disfunction of decidual immune cells leads to adverse pregnancy outcome. Tumour necrosis factor (TNF)-α, a common inflammatory cytokine, has critical roles in different stages of normal pregnancy process. However, the relationship between the disorder of TNF-α and adverse pregnancy outcomes, including preeclampsia (PE), intrauterine growth restriction (IUGR), spontaneous abortion (SA), preterm birth and so on, is still indefinite. In this review, we thoroughly reviewed the effect of TNF-α disorder on pathological conditions. Moreover, we summarized the reports about the adverse pregnancy outcomes (PE, IUGR, SA and preterm birth) of using anti-TNF-α drugs (infliximab, etanercept and adalimumab, certolizumab and golimumab) currently in the clinical studies. Overall, IUGR, SA and preterm birth are the most common adverse pregnancy outcomes of anti-TNF-α drugs. Our review may provide insight for the immunological treatment of pregnancy-related complication, and help practitioners make informed decisions based on the current evidences.
Little is known about how sociodemographic and clinical factors affect the caregiving burden of persons with schizophrenia (PwSs) with transition in primary caregivers.
Aims
This study aimed to examine the predictive effects of sociodemographic and clinical factors on the caregiving burden of PwSs with and without caregiver transition from 1994 to 2015 in rural China.
Method
Using panel data, 206 dyads of PwSs and their primary caregivers were investigated in both 1994 and 2015. The generalised linear model approach was used to examine the predictive effects of sociodemographic factors, severity of symptoms and changes in social functioning on the caregiving burden with and without caregiver transition.
Results
The percentages of families with and without caregiver transition were 38.8% and 61.2%, respectively. Among families without caregiver transition, a heavier burden was significantly related to a larger family size and more severe symptoms in PwSs. Deteriorated functioning of ‘social activities outside the household’ and improved functioning of ‘activity in the household’ were protective factors against a heavy caregiving burden. Among families with caregiver transition, younger age, improved marital functioning, deteriorated self-care functioning, and better functioning of ‘social interest or concern’ were significant risk factors for caregiving burden.
Conclusions
The effects of sociodemographic and clinical correlates on the caregiving burden were different among families with and without caregiver transition. It is crucial to explore the caregiver arrangement of PwSs and the risk factors for burden over time, which will facilitate culture-specific family interventions, community-based mental health services and recovery.
A multidecadal-resolved stalagmite δ18O record from two nearby caves, Lianhua and Dragon, in Shanxi Province, northern China, characterizes the detailed East Asian summer monsoon (EASM) intensity changes at 114.6–108.3 ka during Marine Oxygen Isotope Stage 5d. Our record shows an intensification of the EASM at 114.6–109.5 ka, followed by a rapid weakening at 109.5–108.4 ka. The millennial-scale strong monsoonal event appears to be correlated with the warm Greenland interstadial 25 (GI 25), whereas the weak monsoonal event is related to the cold Greenland stadial 25 within dating errors. The GI 25 monsoonal event registered in our record is also documented in various published time series from different regions of China. The lines of evidence indicate that this event occurred over the entirety of monsoonal China and was also broadly antiphase, similar to the corresponding event on a millennial time scale in the South American monsoon territory. In our record, one 700 yr weak monsoon event at 110.7+0.6−0.5 to 110.0+0.8−0.4 ka divides the GI 25 into three substages. These multicentennial to millennial–scale monsoon events correspond to two warm periods and an intervening cold interval for the intra-interstadial climate oscillations within GI 25, thus supporting a persistent coupling of the high- and low-latitude climate systems over the last glacial period.
This paper investigates the monolithic edge-cladding process for the elliptical disk of N31-type Nd-doped phosphate laser glass, which will be utilized under liquid cooling conditions for high-power laser systems. The thermal stress, interface bubbles and residual reflectivity, which are due to high-temperature casting and bonding during the monolithic edge-cladding process, are simulated and determined. The applied mould is optimized to a rectangular cavity mould, and the casting temperature is optimized to 1000°C. The resulting lower bubble density makes the mean residual reflectivity as low as 6.75 × 10−5, which is enough to suppress the amplified spontaneous emission generated in the Nd-glass disk, and the resulting maximum optical retardation is converged to 10.2–13.3 nm/cm, which is a favourable base for fine annealing to achieve the stress specification of less than or equal to 5 nm/cm. After fine annealing at the optimized 520°C, the maximum optical retardation is as low as 4.8 nm/cm, and the minimum transmitted wavefront peak-to-valley value is 0.222 wavelength (632.8 nm). An N31 elliptical disk with the size of 194 mm × 102 mm × 40 mm can be successfully cladded by the optimized monolithic edge-cladding process, whose edge-cladded disk with the size of 200 mm × 108 mm × 40 mm can achieve laser gain one-third higher than that of an N21-type disk of the same size.
Schizophrenia is a severely debilitating psychiatric disorder with high heritability and polygenic architecture. A higher polygenic risk score for schizophrenia (SzPRS) has been associated with smaller gray matter volume, lower activation, and decreased functional connectivity (FC). However, the effect of polygenic inheritance on the brain white matter microstructure has only been sparsely reported.
Methods
Eighty-four patients with first-episode schizophrenia (FES) patients and ninety-three healthy controls (HC) with genetics, diffusion tensor imaging (DTI), and resting-state functional magnetic resonance imaging (rs-fMRI) data were included in our study. We investigated impaired white matter integrity as measured by fractional anisotropy (FA) in the FES group, further examined the effect of SzPRS on white matter FA and FC in the regions connected by SzPRS-related white matter tracts.
Results
Decreased FA was observed in FES in many commonly identified regions. Among these regions, we observed that in the FES group, but not the HC group, SzPRS was negatively associated with the mean FA in the genu and body of corpus callosum, right anterior corona radiata, and right superior corona radiata. Higher SzPRS was also associated with lower FCs between the left inferior frontal gyrus (IFG)–left inferior temporal gyrus (ITG), right IFG–left ITG, right IFG–left middle frontal gyrus (MFG), and right IFG–right MFG in the FES group.
Conclusion
Higher polygenic risks are linked with disrupted white matter integrity and FC in patients with schizophrenia. These correlations are strongly driven by the interhemispheric callosal fibers and the connections between frontotemporal regions.
Based on hubs of neural circuits associated with addiction and their degree centrality (DC), this study aimed to construct the addiction-related brain networks for patients diagnosed with heroin dependence undertaking stable methadone maintenance treatment (MMT) and further prospectively identify the ones at high risk for relapse with cluster analysis.
Methods
Sixty-two male MMT patients and 30 matched healthy controls (HC) underwent brain resting-state functional MRI data acquisition. The patients received 26-month follow-up for the monthly illegal-drug-use information. Ten addiction-related hubs were chosen to construct a user-defined network for the patients. Then the networks were discriminated with K-means-clustering-algorithm into different groups and followed by comparative analysis to the groups and HC. Regression analysis was used to investigate the brain regions significantly contributed to relapse.
Results
Sixty MMT patients were classified into two groups according to their brain-network patterns calculated by the best clustering-number-K. The two groups had no difference in the demographic, psychological indicators and clinical information except relapse rate and total heroin consumption. The group with high-relapse had a wider range of DC changes in the cortical−striatal−thalamic circuit relative to HC and a reduced DC in the mesocorticolimbic circuit relative to the low-relapse group. DC activity in NAc, vACC, hippocampus and amygdala were closely related with relapse.
Conclusion
MMT patients can be identified and classified into two subgroups with significantly different relapse rates by defining distinct brain-network patterns even if we are blind to their relapse outcomes in advance. This may provide a new strategy to optimize MMT.
The aim of this study was to evaluate the management mode for the prevention and control of coronavirus disease 2019 (COVID-19) transmission used at a general hospital in Shenzhen, China, with the aim to maintain the normal operation of the hospital.
Methods:
From January 2, 2020, to April 23, 2020, Hong Kong–Shenzhen Hospital, a tertiary hospital in Shenzhen, has operated a special response protocol named comprehensive pandemic prevention and control model, which mainly includes 6 aspects: (1) human resource management; (2) equipment management; (3) logistics management; (4) cleaning, disinfection, and process reengineering; (5) environment layout; (6) and training and assessment. The detail of every aspect was described, and its efficiency was evaluated.
Results:
A total of 198,802 patients were received. Of those, 10,821 were hospitalized; 26,767 were received by the emergency department and fever clinics; 288 patients were admitted for observation with fever; and 324 were admitted as suspected cases for isolation. Under the protocol of comprehensive pandemic prevention and control model, no case of hospital-acquired infection with COVID-19 occurred among the inpatients or staff.
Conclusion:
The present comprehensive response model may be useful in large public health emergencies to ensure appropriate management and protect the health and life of individuals.
In this paper, an all-fiberized and narrow-linewidth 5 kW power-level fiber amplifier is presented. The laser is achieved based on the master oscillator power amplification configuration, in which the phase-modulated single-frequency laser is applied as the seed laser and a bidirectional pumping configuration is applied in the power amplifier. The stimulated Brillouin scattering, stimulated Raman scattering, and transverse mode instability effects are all effectively suppressed in the experiment. Consequently, the output power is scaled up to 4.92 kW with a slope efficiency of as high as approximately 80%. The 3-dB spectral width is about 0.59 nm, and the beam quality is measured to be M2∼1.22 at maximum output power. Furthermore, we have also conducted a detailed spectral analysis on the spectral width of the signal laser, which reveals that the spectral wing broadening phenomenon could lead to the obvious decrease of the spectral purity at certain output power. Overall, this work could provide a reference for obtaining and optimizing high-power narrow-linewidth fiber lasers.
Efficiently predicting the flow field and load in aerodynamic shape optimisation remains a highly challenging and relevant task. Deep learning methods have been of particular interest for such problems, due to their success in solving inverse problems in other fields. In the present study, U-net-based deep neural network (DNN) models are trained with high-fidelity datasets to infer flow fields, and then employed as surrogate models to carry out the shape optimisation problem, i.e. to find a minimal drag profile with a fixed cross-sectional area subjected to a two-dimensional steady laminar flow. A level-set method as well as Bézier curve method are used to parameterise the shape, while trained neural networks in conjunction with automatic differentiation are utilised to calculate the gradient flow in the optimisation framework. The optimised shapes and drag force values calculated from the flow fields predicted by the DNN models agree well with reference data obtained via a Navier–Stokes solver and from the literature, which demonstrates that the DNN models are capable not only of predicting flow field but also yielding satisfactory aerodynamic forces. This is particularly promising as the DNNs were not specifically trained to infer aerodynamic forces. In conjunction with a fast runtime, the DNN-based optimisation framework shows promise for general aerodynamic design problems.
A 1178 J near diffraction limited 527 nm laser is realized in a complete closed-loop adaptive optics (AO) controlled off-axis multi-pass amplification laser system. Generated from a fiber laser and amplified by the pre-amplifier and the main amplifier, a 1053 nm laser beam with the energy of 1900 J is obtained and converted into a 527 nm laser beam by a KDP crystal with 62% conversion efficiency, 1178 J and beam quality of 7.93 times the diffraction limit (DL). By using a complete closed-loop AO configuration, the static and dynamic wavefront distortions of the laser system are measured and compensated. After correction, the diameter of the circle enclosing 80% energy is improved remarkably from 7.93DL to 1.29DL. The focal spot is highly concentrated and the 1178 J, 527 nm near diffraction limited laser is achieved.
The global outbreak of coronavirus disease 2019 (COVID-19) is greatly threatening the public health in the world. We reconstructed global transmissions and potential demographic expansions of severe acute respiratory syndrome coronavirus 2 based on genomic information. We found that intercontinental transmissions were rare in January and early February but drastically increased since late February. After world-wide implements of travel restrictions, the transmission frequencies decreased to a low level in April. We identified a total of 88 potential demographic expansions over the world based on the star-radiative networks and 75 of them were found in Europe and North America. The expansion numbers peaked in March and quickly dropped since April. These findings are highly concordant with epidemic reports and modelling results and highlight the significance of quarantine validity on the global spread of COVID-19. Our analyses indicate that the travel restrictions and social distancing measures are effective in containing the spread of COVID-19.