We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Climate change is a key problem of the 21st century. China, as the largest emitter of greenhouse gases, has committed to stabilize its current emissions and dramatically increase the share of electricity production from non-fossil fuels by 2030. However, this is only a first step: in the longer term, China needs to aggressively strive to reach a goal of zero-emissions. Through detailed discussions of electricity pricing, electric vehicle policies, nuclear energy policies, and renewable energy policies, this book reviews how near-term climate and energy policies can affect long-term decarbonization pathways beyond 2030, building the foundations for decarbonization in advance of its realization. Focusing primarily on the electricity sector in China - the main battleground for decarbonization over the next century – it provides a valuable resource for researchers and policymakers, as well as energy and climate experts.
This work aimed to evaluate a pre/post-reform pilot study from 2015 to 2018 in a rural county of Zhejiang Province, China to realign the provider payment system for primary health care (PHC).
Methods:
Data were extracted from the National Health Financial Annual Reports for the 21 township health centers (THCs) in Shengzhou County. An information system was designed for the reform. Differences among independent groups were assessed using Kruskal–Wallis H-test. Dunn’s post hoc test was used for multiple comparisons. Differences between paired groups were tested by Wilcoxon signed-rank test. Two-tailed P < 0.05 indicated statistical significance. Data were processed and analyzed using R 3.6.1 for Windows.
Findings:
First, payments to THCs shifted from a “soft budget” to a mixed system of line-item input-based and categorized output-based payments, accounting for 17.54% and 82.46%, respectively, of total revenue in 2017. Second, providers were more motivated to deliver services after the reform; total volumes increased by 27.80%, 19.22%, and 30.31% for inpatient visits, outpatient visits, and the National Essential Public Health Services Package (NEPHSP), respectively. Third, NEPHSP payments were shifted from capitation to resource-based relative value scale (RBRVS) payments, resulting in a change in the NEPHSP subsidy from 36.41 to 67.35 per capita among the 21 THCs in 2017. Fourth, incentive merit pay to primary health physicians accounted for 38.40% of total salary, and the average salary increased by 32.74%, with a 32.45% increase in working intensity. A small proportion of penalties for unqualified products and pay-for-performance rewards were blended with the payments. The reform should be modified to motivate providers in remote areas.
Conclusion:
In the context of a profit-driven, hospital-centered system, add-on payments – including categorized output-based payments to THCs and incentive merit pay to primary care physicians (PCPs) – are probably worth pursuing to achieve more active and output/outcome-based PHC in China.
In this work ice breaking caused by a pair of interacting collapsing bubbles was studied by an experimental approach. The bubbles were generated by an underwater electric discharge simultaneously, positioned either horizontally or vertically below a floating ice plate and observed via high-speed photography. The bubble-induced shock waves, which turn out to be crucial to the fracturing of the ice, were visualized using a shadowgraph method and also measured using pressure transduces. Unique bubble behaviour was observed, including bubble coalescence, bubble splitting, inclined counter-jets and asymmetric toroidal bubble collapse. Bubble dynamic properties, such as jet speed, jet energy and bubble centre displacement, were measured. Shock wave emission and ice breaking capability of the two bubbles were investigated over a range of inter-bubble and bubble–boundary distances. Regions where the damaging potential of the bubble pair are strengthened or weakened were summarized and possible reasons for the variation in the ice breaking capability were analysed based on bubble morphology, jet characteristics and shock wave pressure. The findings may contribute to more efficient ice breaking and also inspire new ways to manipulate cavitation bubble damage.
We report a comparative experimental study of the reversal of the large-scale circulation in turbulent Rayleigh–Bénard convection in a quasi-two-dimensional corner-less cell where the corner vortices are absent and in a quasi-two-dimensional normal cell where the corner vortices are present. It is found that in the corner-less cell the reversal frequency exhibits a slow decrease followed by a fast decrease with increasing Rayleigh number
$Ra$
, separated by a transitional
$Ra$
(
$Ra_{t,r}$
). The transition is similar to that in the normal cell, and
$Ra_{t,r}$
is almost the same for both cells. Despite the similarities, the reversal frequency is greatly reduced in the corner-less cell. The reduction of the reversal frequency is more significant, in terms of both the amplitude and the scaling exponent, in the high-
$Ra$
regime. In addition, we classified the reversals into main-vortex-led and corner-vortex-led, and found that both types exist in the normal cell while only the former exists in the corner-less cell. The frequency of main-vortex-led reversal in the normal cell is found to be in excellent agreement with the frequency of reversals in the corner-less cell. Our results reveal for the first time the quantitative role of the corner vortices in the occurrence of the reversals of the large-scale circulation.
The experimental study on thermocapillary convection in liquid bridges of large Prandtl number has been carried out on Tiangong-2 in space. The purpose of these experiments is to study the oscillation instability of thermocapillary convection, and to discover and recognize the mechanism of destabilization of thermocapillary convection in the microgravity environment in space. In this paper, the geometry of a half-floating-zone liquid bridge is featured by the aspect ratio Ar and volume ratio Vr, and its influence on critical conditions of oscillatory thermocapillary convection is studied. More than 700 sets of space experiments have been finished. The critical conditions and oscillation characteristics of thermocapillary convection instability in the Ar–Vr parameter space have been fully obtained under microgravity conditions for the first time. It is found that the Ar–Vr parameter space can be divided into two regions of different critical conditions and oscillation characteristics: the region of low frequency oscillation, and the region of high frequency oscillation. More importantly, we obtain the complete configuration of these two stability neutral curves, and find that the low frequency mode is a ‘’ type curve. Based on this, we discuss the influence of heating rate on the oscillation mode. It is found that the heating rate affects the selection of critical mode, which results in a jump change of critical temperature difference. The findings of this study are helpful to better understand the critical modes and transition processes of thermocapillary convection in liquid bridges with different configurations.
Triploid and pentaploid breeding is of great importance in agricultural production, but it is not always easy to obtain double ploidy parents. However, in fishes, chromosome ploidy is diversiform, which may provide natural parental resources for triploid and pentaploid breeding. Both tetraploid and hexaploid exist in Schizothorax fishes, which were thought to belong to different subfamilies with tetraploid Percocypris fishes in morphology, but they are sister genera in molecule. Fortunately, the pentaploid hybrid fishes have been successfully obtained by hybridization of Schizothorax wangchiachii (♀, 2n = 6X = 148) × Percocypris pingi (♂, 2n = 4X = 98). To understand the genetic and morphological difference among the hybrid fishes and their parents, four methods were used in this study: morphology, karyotype, red blood cell (RBC) DNA content determination and inter-simple sequence repeat (ISSR). In morphology, the hybrid fishes were steady, and between their parents with no obvious preference. The chromosome numbers of P. pingi have been reported as 2n = 4X = 98. In this study, the karyotype of S. wangchiachii was 2n = 6X = 148 = 36m + 34sm + 12st + 66t, while that the hybrid fishes was 2n = 5X = 123 = 39m + 28sm + 5st + 51t. Similarly, the RBC DNA content of the hybrid fishes was intermediate among their parents. In ISSR, the within-group genetic diversity of hybrid fishes was higher than that of their parents. Moreover, the genetic distance of hybrid fishes between P. pingi and S.wangchiachii was closely related to that of their parental ploidy, suggesting that parental genetic material stably coexisted in the hybrid fishes. This is the first report to show a stable pentaploid F1 hybrids produced by hybridization of a hexaploid and a tetraploid in aquaculture.
High-power orbital angular momentum (OAM) beams have distinct advantages in improving capacity and data receiving for free-space optical communication systems at long distances. Utilizing the coherent combination of a beam array technique and helical phase approximation by a piston phase array, we have proposed a generating system for a novel high-power beam carrying OAM, which could overcome the power limitations of a common vortex phase modulator and a single beam. The characteristics of this generating method and the orthogonality of the generated OAM beams with different eigenstates have been theoretically analyzed and verified. Also a high-power OAM beam produced by coherent beam combination (CBC) of a six-element hexagonal fiber amplifier array has been experimentally implemented. Results show that the CBC technique utilized to control the piston phase differences among the array beams has a high efficiency of 96.3%. On the premise of CBC, we have obtained novel vortex beams carrying OAM of
$\pm 1$
by applying an additional piston phase array modulation on the corresponding beam array. The experimental results agree approximately with the theoretical analysis. This work could be beneficial to areas that need high-power OAM beams, such as ultra-long distance free-space optical communications, biomedical treatments, and powerful trapping and manipulation under deep potential wells.
High-peak-power transform-limited narrow-linewidth nanosecond all-fiber lasers are desired in a range of applications. However, their linewidths will be broadened by self-phase modulation (SPM). We propose a novel concept that generates transform-limited laser pulses by temporally shaping the pulse seed. The impact of the pulse shape on SPM-induced spectral broadening was studied numerically and experimentally. It was found theoretically that the square-shape pulsed laser is immune to SPM-induced spectral broadening. Based on this principle, we built a high-peak-power, linearly polarized, square-shape nanosecond all-fiber laser in a master oscillator power amplifier (MOPA) configuration. Stimulated Brillouin scattering (SBS) limited peak powers of 4.02 kW, 5.06 kW, 6.52 kW and 9.30 kW were obtained at pulse widths of 8 ns, 7 ns, 6 ns and 5 ns. Thanks to the square-shape pulsed seed, the linewidths at maximum peak power remained at 129.5 MHz, 137.6 MHz, 156.2 MHz and 200.1 MHz, respectively, close to the transform-limited values of 110.8 MHz, 126.6 MHz, 147.7 MHz and 177.3 MHz.
Third-generation semiconductors, such as ZnO and GaN, exhibit strong piezoelectric polarization due to the lack of inversion symmetry. The piezotronic effect observed in these semiconductors was proposed for tuning carrier transport in electronic devices by utilizing the induced piezoelectric potential as a virtual gate. This novel concept allows effective interactions between micro-/nanoelectronic devices and external mechanical stimuli. Piezotronics provide a promising approach for designing future electronic devices beyond Moore’s Law with potential for developing smart sensors, environment monitoring systems, human–machine interaction elements, and other transducers. In this article, we review recent progress in piezotronics using one-dimensional materials, heterojunctions, and large-scale arrays. We provide guidance for future piezotronic devices based on these materials.
Group-3 medulloblastoma (MBL) is highly resistant to radiation (IR) and chemotherapy and has the worst prognosis. Hence, there is an urgent need to elucidate targets that sensitize these tumors to chemotherapy and IR. Employing standard assays for viability and sensitization to IR, we identified PRDX1 as a therapeutic target in Group-3 MBL. Specifically, targeting PRDX1 by RNAi or inhibition by Adenanthin led to specific killing and sensitization to IR of Group-3 MBL cells. We rescued sensitization of Daoy and UW228 cells by hypermorphic expression of PRDX1. PRDX1 knockdown caused oxidative DNA damage and induced apoptosis. We correlated PRDX1 expression to patient outcomes in a validated MBL tumor-microarray. Whole genome sequencing identified pathways/genes that were dysregulated with PRDX1 inhibition or silencing. Our in vivo studies in mice employing flank/orthotopic tumors from patient derived xenografts/Group-3 MBL cells confirmed in vitro observations. Animals with tumors in which PRDX1 was targeted by RNAi or Adenanthin (using mini osmotic pumps) showed decreased tumor burden and increased survival when compared to controls. Since, Adenanthin does not cross the blood brain barrier (BBB) we used HAV6 peptide to transiently disrupt the BBB and deliver Adenanthin to the tumor. Immunohistochemistry confirmed that targeting PRDX1 resulted in increased oxidative DNA damage, apoptosis and decreased proliferation. In summary, we have validated PRDX1 as a therapeutic target in group-3 MBL, identified Adenanthin as a potent chemical inhibitor of PRDX1 and confirmed the role of HAV peptide (in the transient modulation of BBB permeability) in an orthotopic model of group-3 MBL.
Aim: To provide a framework for provider payment reform for primary care physicians in China. Background: Primary health care is central to health system reform and payment incentives have significant consequences for the equity and efficiency of it. Methods: This paper describes the special payments system for public primary health institutions and the subsequent internal salary remuneration to primary care physicians in China. Based on an analysis of the major challenges, we suggest a reform framework including the pattern of governance, and payments to primary health institutions and employed physicians. Findings: A mixed system of input-based and output-based payments to institutions would probably be appropriate under a long-term and relational contract with the government. It was also advised that internal remuneration is provided by a basic salary plus a bonus based on performance, and an extra-regional allowance. We hope that the results can be used to shift the passive budgeting of in-house staff within the public primary health institutions toward strategic purchasing.
This work focuses on using the power of a collapsing bubble in ice breaking. We experimentally validated the possibility and investigated the mechanism of ice breaking with a single collapsing bubble, where the bubble was generated by underwater electric discharge and collapsed at various distances under ice plates with different thicknesses. Characteristics of the ice fracturing, bubble jets and shock waves emitted during the collapse of the bubble were captured. The pattern of the ice fracturing is related to the ice thickness and the bubble–ice distance. Fractures develop from the top of the ice plate, i.e. the ice–air interface, and this is attributed to the tension caused by the reflection of the shock waves at the interface. Such fracturing is lessened when the thickness of the ice plate or the bubble–ice distance increases. Fractures may also form from the bottom of the ice plate upon the shock wave incidence when the bubble–ice distance is sufficiently small. The ice plate motion and its effect on the bubble behaviour were analysed. The ice plate motion results in higher jet speed and greater elongation of the bubble shape along the vertical direction. It also causes the bubble initiated close to the ice plate to split and emit multiple shock waves at the end of the collapse. The findings suggest that collapsing bubbles can be used as a brand new way of ice breaking.
Graphitic carbon nitride (g-C3N4) is considered as a promising heterogeneous catalyst for photocatalytic H2 evolution from water under visible light illustration, and its photocatalytic performance could be controlled through its texture and optical/electronic properties. Herein, we present a facile one-step heating method for the synthesis of B/P/F doped g-C3N4 photocatalysts (BCN, PCN, and FCN). The prepared photocatalysts were characterized by XRD, SEM, UV-vis absorption, FTIR, BET, XPS, PL, and photocurrent measurement. The results show that the B/P/F doping increased the interplanar stacking distance of g-C3N4, enlarged the optical absorption range, and improved the photocatalytic activity of H2 evolution. FCN exhibits the highest photocatalytic activity, followed by BCN, and PCN that has the lowest performance. This work studies the doping effects of the nonmetal elements on the photocatalytic activities, the electronic structures as well as the band gaps of g-C3N4, to provide a feasible modification pathway to design and synthesize highly efficient photocatalysts.
Stimulated Raman scattering (SRS) effect is considered to be one of the main obstacles for power scaling in general-type fiber lasers. Different from previous techniques that aim at suppressing SRS, nonlinear fiber amplifier (NFA), which manipulates and employs the SRS for power scaling in rare-earth-doped fiber, is under intensive research in recent years. In this paper, the authors will present an all-round study on this new kind of high-power fiber amplifier. A theoretical model is proposed based on the rate equation and amplified spontaneous emission (ASE), with random noise taken into account. By numerical solving of the theoretical model, the power scaling potential, heat analysis and advantages in suppressing the undesired backscattering light are quantificationally analyzed for the first time. Then two different types of high-power NFAs are demonstrated individually. Firstly, a laser diode pumped NFA has reached kilowatt output power, and the results agree well with theoretical predictions. Secondly, a tandem-pumped NFA is proposed for the first time and validated experimentally, in which 1.5 kW output power has been achieved. The authors also briefly discuss several new issues relating to the complex nonlinear dynamics that occur in high-power NFAs, which might be interesting topics for future endeavors.
Compared with traditional uniform fibers, tapered fiber has numerous unique advantages, such as larger mode area, higher pump absorption, suppression to nonlinear effects, and maintaining good beam quality. In this manuscript, we have constructed an all-fiberized fiber amplifier which is based on a piece of ytterbium-doped tapered double-clad fiber (T-DCF). The fiber amplifier is operated under continuous wave (CW) regime at 1080 nm wavelength. The
$M^{2}$
factor of the amplifier at 1.39 kW output power is
${\sim}1.8$
. The maximum output power of the system reached 1.47 kW, which, to the best of our knowledge, is the highest output power of long tapered fiber based fiber laser system. Our result successfully verifies the potential of power scalability and all-fiberized capability of long tapered fiber, and the performance of our system can be further enhanced by fiber design optimization.
Biological hydrogel is important in drug delivery system and tissue engineering. In this paper, we prepared a series of biological hydrogels with N,O-carboxymethyl chitosan (CS) and oxidized safflower and ligusticum wallichii polysaccharide-II (oxidized SLWP-II). Morphological analysis indicated the N,O-carboxymethyl CS/oxidized SLWP-II hydrogels (CSLHs) had porous interior structures, pore diameter ranged from tens to hundreds of micrometers. In vitro release test showed, with proportion of N,O-carboxymethyl CS to oxidized SLWP increasing from 1:1 to 1:3, cumulative release of bovine serum albumin decreased from 99 to 82%. In vitro cytotoxicity study showed that the developed hydrogels were not cytotoxic during one week of culturing with WI-38 cells, and they have a role in promoting cell proliferation. So the N,O-carboxymethyl CS/oxidized safflower and ligusticum wallichii polysaccharide-II hydrogels might have potential application in the drug delivery system and tissue engineering.
Ceratovacuna lanigera Zehntner is a major leaf pest of sugarcane. Widely distributed, it affects both the yield and quality of sugarcane in China. This study aimed to assess real yield and sugar yield losses, and the effect of C. lanigera damage on emergence of newly planted and ratoon cane under current production levels. Field experiments were carried out from 2014 to 2016 in Yunnan Province China. At maturity, plants were harvested and weighed to determine yield, and the effect on sugarcane quality and sucrose content analyzed. Real yield decreased by average of 46,185 kg hm−2 (range: 37,545–61,845 kg hm−2) in damaged versus undamaged areas, with an average yield loss rate of 35.9% (28.5–45.7%). Juice yield decreased by an average of 3.01% (2.4–4.13%) and sucrose content by 6.38% (5.48–8.16%). Juice brix decreased by an average of 7.66°BX (6.95–9.05°BX) and juice gravity purity by 12.35% (8.43–19.97%). In contrast, the reducing sugar content increased by an average of 1.21% (1.01–1.3%). Emergence rates of newly planted cane decreased by an average of 26.0% (24.7–27.3%). The emergence number of ratoon cane decreased by 66,834 hm2 (57,429–76,238 hm−2) and relative emergence loss rates of ratoon cane decreased by an average of 57.8% (57.6–58.0%). These findings confirm that C. lanigera damage severely affects sugarcane yield and quality in Yunnan Province. The results will help the implementation of effective control measures, thereby supporting sustainable development of the Chinese sugar industry.
Although many studies worldwide have focused on the relationship between vitamin D and insulin resistance, results remain controversial. Furthermore, concentrations of serum 25-hydroxyvitamin D (25(OH)D) in the Chinese population are unclear. We aimed to investigate vitamin D status and its correlation with insulin resistance among a Chinese adult population.
Design
Serum 25(OH)D, fasting blood glucose, fasting insulin, glycated Hb (HbA1c) and other metabolic parameters were assessed. Neck circumference, waist circumference, hip circumference, weight and height were also measured. Lifestyle factors including smoking and drinking status were obtained. Diabetes mellitus was diagnosed by HbA1c according to the 2010 American Diabetes Association criteria.
Setting
Eastern China.
Subjects
Of 7200 residents included, 6597 individuals were ultimately analysed.
Results
We enrolled 2813 males (mean age 52·7 (sd 13·5) years) and 3784 females (52·3 (sd 13·5) years); mean serum 25(OH)D concentration was 43·1 (sd 11·6) and 39·6 (sd 9·8) nmol/l, respectively. Additionally, 83·3 % of participants were 25(OH)D deficient. A significant difference in 25(OH)D was observed between males and females in winter and spring (P<0·001). Furthermore, 25(OH)D concentrations were inversely associated with the homeostasis model assessment of insulin resistance (HOMA-IR) in the overweight and pre-diabetic populations. After adjusting for several variables, 25(OH)D was significantly associated with HOMA-IR in winter. When 25(OH)D values were categorized into quartiles, HOMA-IR was significantly associated with decreasing 25(OH)D.
Conclusions
The majority of the Chinese population was vitamin D deficient and this deficiency was negatively associated with insulin resistance, particularly in the overweight and pre-diabetic populations. Moreover, these associations might be more evident in the winter.