Channeled implants have been performed with lOOkeV 28Si+ into p-type Si(100) to obtain a buried amorphous layer. Before and after recrystallization of the a-Si layer, Cu was implanted at an energy of 15 keV and a dose ranging from 5E13 to 1E15 I cm2- to obtain a high concentration of Cu in the near surface region. Also, Cu implants were performed into virgin Si for comparison. After Cu implantation, thermal annealing was performed at temperatures between 490 °C and 900 °C for 10 min. to 320 min. Cu profiles before and after annealing were studied with Rutherford Backscattering Spectrometry and channeling analysis. For the case where Cu was implanted after recrystallization of the buried amorphous layer, Cu was gettered at the position where the ale interfaces met during recrystallization. For the case where Cu was implanted before recrystallization, Cu diffused towards the buried a-Si region upon annealing and was trapped inside the recrystallizing buried amorphous layer. The results show that buried damage layers can effectively getter Cufrom the Si surface layer and gettering is most efficient at 600 °C.