We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
During the 2018/19 Antarctic field season, the British Antarctic Survey (BAS) Basal conditions on Rutford Ice Stream: BEd Access, Monitoring and Ice Sheet History’ (BEAMISH) project drilled three holes through the Rutford Ice Stream, West Antarctica. At up to 2154 m, these are the deepest hot water drilled subglacial access holes yet created, enabling the recovery of sediment from the subglacial environment, and instrumenting the ice stream and its bed. The BEAMISH hot-water drill system was built on extensive experience with the BAS ice shelf hot-water drill and utilises many identical components. With up to 1 MW of heating power available, the hot water drill produces 140 L min−1 of water at 85°C to create a 300 mm diameter access hole to the base of the ice stream. New systems and processes were developed for BEAMISH to aid critical aspects of deep access drilling, most notably the creation of cavities interlinking boreholes at 230 m below the surface and enabling water recirculation throughout the deep drilling operations. The modular design of the BEAMISH drill offers many benefits in its adaptability, redundancy, and minimal logistical footprint. These design features can easily accommodate the modifications needed for future deep, clean access hole creation in the exploration of subglacial environments.
Three holes were drilled to the bed of Rutford Ice Stream, through ice up to 2154 m thick, to investigate the basal processes and conditions associated with fast ice flow and the glacial history of the West Antarctic Ice Sheet. A narrative of the drilling, measuring and sampling activities, as well as some preliminary results and initial interpretations of subglacial conditions, is given. These were the deepest subglacial access holes ever drilled using the hot-water drilling method. Samples of bed and englacial sediments were recovered, and a number of instruments were installed in the ice column and the bed. The ice–bed interface was found to be unfrozen, with an existing, well-developed subglacial hydrological system at high pressure, within ~1% of the ice overburden. The bed itself comprises soft, water-saturated sediments, consistent with previous geophysical interpretations. Englacial sediment quantity varies significantly between two locations ~2 km apart, and possibly over even shorter (~20 m) distances. Difficulties and unusual observations encountered while connecting to the subglacial hydrological system in one hole possibly resulted from the presence of a large clast embedded in the bottom of the ice.
To identify factors that increase the microbial load in the operating room (OR) and recommend solutions to minimize the effect of these factors.
Design:
Observation and sampling study.
Setting:
Academic health center, public hospitals.
Methods:
We analyzed 4 videotaped orthopedic surgeries (15 hours in total) for door openings and staff movement. The data were translated into a script denoting a representative frequency and location of movements for each OR team member. These activities were then simulated for 30 minutes per trial in a functional operating room by the researchers re-enacting OR staff-member roles, while collecting bacteria and fungi using settle plates. To test the hypotheses on the influence of activity on microbial load, an experimental design was created in which each factor was tested at higher (and lower) than normal activity settings for a 30-minute period. These trials were conducted in 2 phases.
Results:
The frequency of door opening did not independently affect the microbial load in the OR. However, a longer duration and greater width of door opening led to increased microbial load in the OR. Increased staff movement also increased the microbial load. There was a significantly higher microbial load on the floor than at waist level.
Conclusions:
Movement of staff and the duration and width of door opening definitely affects the OR microbial load. However, further investigation is needed to determine how the number of staff affects the microbial load and how to reduce the microbial load at the surgical table.
Optical tracking systems typically trade off between astrometric precision and field of view. In this work, we showcase a networked approach to optical tracking using very wide field-of-view imagers that have relatively low astrometric precision on the scheduled OSIRIS-REx slingshot manoeuvre around Earth on 22 Sep 2017. As part of a trajectory designed to get OSIRIS-REx to NEO 101955 Bennu, this flyby event was viewed from 13 remote sensors spread across Australia and New Zealand to promote triangulatable observations. Each observatory in this portable network was constructed to be as lightweight and portable as possible, with hardware based off the successful design of the Desert Fireball Network. Over a 4-h collection window, we gathered 15 439 images of the night sky in the predicted direction of the OSIRIS-REx spacecraft. Using a specially developed streak detection and orbit determination data pipeline, we detected 2 090 line-of-sight observations. Our fitted orbit was determined to be within about 10 km of orbital telemetry along the observed 109 262 km length of OSIRIS-REx trajectory, and thus demonstrating the impressive capability of a networked approach to Space Surveillance and Tracking.
To develop a pediatric research agenda focused on pediatric healthcare-associated infections and antimicrobial stewardship topics that will yield the highest impact on child health.
Participants:
The study included 26 geographically diverse adult and pediatric infectious diseases clinicians with expertise in healthcare-associated infection prevention and/or antimicrobial stewardship (topic identification and ranking of priorities), as well as members of the Division of Healthcare Quality and Promotion at the Centers for Disease Control and Prevention (topic identification).
Methods:
Using a modified Delphi approach, expert recommendations were generated through an iterative process for identifying pediatric research priorities in healthcare associated infection prevention and antimicrobial stewardship. The multistep, 7-month process included a literature review, interactive teleconferences, web-based surveys, and 2 in-person meetings.
Results:
A final list of 12 high-priority research topics were generated in the 2 domains. High-priority healthcare-associated infection topics included judicious testing for Clostridioides difficile infection, chlorhexidine (CHG) bathing, measuring and preventing hospital-onset bloodstream infection rates, surgical site infection prevention, surveillance and prevention of multidrug resistant gram-negative rod infections. Antimicrobial stewardship topics included β-lactam allergy de-labeling, judicious use of perioperative antibiotics, intravenous to oral conversion of antimicrobial therapy, developing a patient-level “harm index” for antibiotic exposure, and benchmarking and or peer comparison of antibiotic use for common inpatient conditions.
Conclusions:
We identified 6 healthcare-associated infection topics and 6 antimicrobial stewardship topics as potentially high-impact targets for pediatric research.
The sparse record of Cretaceous crocodyliforms in Australia comprises only three species, all within the genus Isisfordia. Isisfordia duncani Salisbury et al., 2006 is from the Albian–Turonian Winton Formation of Queensland, and both Isisfordia molnari Hart et al., 2019 and Isisfordia selaslophensis Etheridge, 1917 have been described from opalized material from the Cenomanian Griman Creek Formation of New South Wales. Here, we describe new cranial and postcranial material, including the most complete crocodyliform skeleton from the Cretaceous of New South Wales, which is assigned to Isisfordia cf. I. selaslophensis. We also reappraise previously described crocodyliform material from the same locality. We find that much of this material displays features that are consistent with Isisfordia.
Gravitational waves from coalescing neutron stars encode information about nuclear matter at extreme densities, inaccessible by laboratory experiments. The late inspiral is influenced by the presence of tides, which depend on the neutron star equation of state. Neutron star mergers are expected to often produce rapidly rotating remnant neutron stars that emit gravitational waves. These will provide clues to the extremely hot post-merger environment. This signature of nuclear matter in gravitational waves contains most information in the 2–4 kHz frequency band, which is outside of the most sensitive band of current detectors. We present the design concept and science case for a Neutron Star Extreme Matter Observatory (NEMO): a gravitational-wave interferometer optimised to study nuclear physics with merging neutron stars. The concept uses high-circulating laser power, quantum squeezing, and a detector topology specifically designed to achieve the high-frequency sensitivity necessary to probe nuclear matter using gravitational waves. Above 1 kHz, the proposed strain sensitivity is comparable to full third-generation detectors at a fraction of the cost. Such sensitivity changes expected event rates for detection of post-merger remnants from approximately one per few decades with two A+ detectors to a few per year and potentially allow for the first gravitational-wave observations of supernovae, isolated neutron stars, and other exotica.
George L. Cowgill had a major influence on the study of the ancient city of Teotihuacan and the development and promotion of quantitative methods in archaeology. His wit, teaching, and research influenced many in the profession. We draw on two published autobiographical works (Cowgill 2008a, 2013a), some unpublished autobiographical notes (Cowgill 1983), his many publications, and our own associations with George.
A new high time resolution observing mode for the Murchison Widefield Array (MWA) is described, enabling full polarimetric observations with up to
$30.72\,$
MHz of bandwidth and a time resolution of
${\sim}$
$0.8\,\upmu$
s. This mode makes use of a polyphase synthesis filter to ‘undo’ the polyphase analysis filter stage of the standard MWA’s Voltage Capture System observing mode. Sources of potential error in the reconstruction of the high time resolution data are identified and quantified, with the
$S/N$
loss induced by the back-to-back system not exceeding
$-0.65\,$
dB for typical noise-dominated samples. The system is further verified by observing three pulsars with known structure on microsecond timescales.
The Murchison Widefield Array (MWA) has observed the entire southern sky (Declination,
$\delta< 30^{\circ}$
) at low radio frequencies, over the range 72–231MHz. These observations constitute the GaLactic and Extragalactic All-sky MWA (GLEAM) Survey, and we use the extragalactic catalogue (EGC) (Galactic latitude,
$|b| >10^{\circ}$
) to define the GLEAM 4-Jy (G4Jy) Sample. This is a complete sample of the ‘brightest’ radio sources (
$S_{\textrm{151\,MHz}}>4\,\text{Jy}$
), the majority of which are active galactic nuclei with powerful radio jets. Crucially, low-frequency observations allow the selection of such sources in an orientation-independent way (i.e. minimising the bias caused by Doppler boosting, inherent in high-frequency surveys). We then use higher-resolution radio images, and information at other wavelengths, to morphologically classify the brightest components in GLEAM. We also conduct cross-checks against the literature and perform internal matching, in order to improve sample completeness (which is estimated to be
$>95.5$
%). This results in a catalogue of 1863 sources, making the G4Jy Sample over 10 times larger than that of the revised Third Cambridge Catalogue of Radio Sources (3CRR;
$S_{\textrm{178\,MHz}}>10.9\,\text{Jy}$
). Of these G4Jy sources, 78 are resolved by the MWA (Phase-I) synthesised beam (
$\sim2$
arcmin at 200MHz), and we label 67% of the sample as ‘single’, 26% as ‘double’, 4% as ‘triple’, and 3% as having ‘complex’ morphology at
$\sim1\,\text{GHz}$
(45 arcsec resolution). We characterise the spectral behaviour of these objects in the radio and find that the median spectral index is
$\alpha=-0.740 \pm 0.012$
between 151 and 843MHz, and
$\alpha=-0.786 \pm 0.006$
between 151MHz and 1400MHz (assuming a power-law description,
$S_{\nu} \propto \nu^{\alpha}$
), compared to
$\alpha=-0.829 \pm 0.006$
within the GLEAM band. Alongside this, our value-added catalogue provides mid-infrared source associations (subject to 6” resolution at 3.4
$\mu$
m) for the radio emission, as identified through visual inspection and thorough checks against the literature. As such, the G4Jy Sample can be used as a reliable training set for cross-identification via machine-learning algorithms. We also estimate the angular size of the sources, based on their associated components at
$\sim1\,\text{GHz}$
, and perform a flux density comparison for 67 G4Jy sources that overlap with 3CRR. Analysis of multi-wavelength data, and spectral curvature between 72MHz and 20GHz, will be presented in subsequent papers, and details for accessing all G4Jy overlays are provided at https://github.com/svw26/G4Jy.
The entire southern sky (Declination,
$\delta< 30^{\circ}$
) has been observed using the Murchison Widefield Array (MWA), which provides radio imaging of
$\sim$
2 arcmin resolution at low frequencies (72–231 MHz). This is the GaLactic and Extragalactic All-sky MWA (GLEAM) Survey, and we have previously used a combination of visual inspection, cross-checks against the literature, and internal matching to identify the ‘brightest’ radio-sources (
$S_{\mathrm{151\,MHz}}>4$
Jy) in the extragalactic catalogue (Galactic latitude,
$|b| >10^{\circ}$
). We refer to these 1 863 sources as the GLEAM 4-Jy (G4Jy) Sample, and use radio images (of
${\leq}45$
arcsec resolution), and multi-wavelength information, to assess their morphology and identify the galaxy that is hosting the radio emission (where appropriate). Details of how to access all of the overlays used for this work are available at https://github.com/svw26/G4Jy. Alongside this we conduct further checks against the literature, which we document here for individual sources. Whilst the vast majority of the G4Jy Sample are active galactic nuclei with powerful radio-jets, we highlight that it also contains a nebula, two nearby, star-forming galaxies, a cluster relic, and a cluster halo. There are also three extended sources for which we are unable to infer the mechanism that gives rise to the low-frequency emission. In the G4Jy catalogue we provide mid-infrared identifications for 86% of the sources, and flag the remainder as: having an uncertain identification (129 sources), having a faint/uncharacterised mid-infrared host (126 sources), or it being inappropriate to specify a host (2 sources). For the subset of 129 sources, there is ambiguity concerning candidate host-galaxies, and this includes four sources (B0424–728, B0703–451, 3C 198, and 3C 403.1) where we question the existing identification.
Vertebrates may be born highly dependent (altricial) or may rapidly gain independence (precocial). Primates are generally considered somatically precocial. However, all are at least initially helpless, and many primates have a prolonged phase of juvenility. In this chapter, we discuss how selection may influence the relative timing of appearance of morphological features (heterochrony). Newborn primate morphology offers unique insights into the roles of prenatal and postnatal growth processes, primarily because metabolic costs for growth commence a transition from the mother to the infant at this point in time. With this in mind, primates vary remarkably at birth in dental eruption and mineralization status as well as limb skeleton ossification (e.g., wrists and ankles). We also discuss evidence, still relatively scant, that at birth primates vary greatly in the degree to which neural organs (e.g., brains, eyes) have achieved adult size and proportions. In preparation for morphological descriptions to follow, the reader is introduced to the concept of modularity of growth: different parts of the skeleton or even parts of regions have different rates of growth and development.
Skeletal Anatomy of the Newborn Primate was written to broaden our knowledge of non-human primates from a comparative and developmental perspective. This chapter explains that the main focus of our book is on the inherently risky neonatal period. The “neonate,” or newborn, is considered here to be a perinatal primate of up to seven days postnatal age. However, there is no simple way to physically identify primate newborns, not in the same many have defined “infants,” based on dental maturity. This is precisely what makes the neonatal stage so interesting: primates, like most other groups of mammals, vary in how rapidly they attain physical maturity. This introductory chapter discusses terminology and methodological challenges in studying newborns.
Feeding ontogeny in primates has three stages. In utero, nutrition is gained maternally. After birth, primates suckle. We know little about functional variation in these stages. The transition to adult feeding – highlighted by weaning – varies across species. Variation is tied to many socioecological and morphological influences across primates. Primate feeding apparatus ontogeny is affected by many factors. Diet exhibits a complex relationship with the clearest signal marked by rapid dental mineralization and eruption in folivorous strepsirrhines. Mineralization varies across primates. Emergence and eruption of postcanine teeth tends to follow size in both suborders with smaller taxa showing earlier emergence, the exception being rapid eruption in some folivores. Compared to teeth, less is known about the musculoskeletal ontogeny of the feeding apparatus. Most studies compare closely related species and link musculoskeletal robustness to challenging diets. Looking forward, better understanding of primate feeding apparatus growth will require improved samples (a challenge for long-lived species) and emphasis on the evolutionary significance of feeding throughout ontogeny.
In this chapter we introduce concepts in dental development, microanatomy of the tooth germ and mineralizing crowns, and terminology relating to dental morphology. Subsequently, tooth morphology in newborn hominoids (apes and humans) is discussed based on the literature, followed by accounts of the extent of crown mineralization at birth in a newly described sample of tarsiers, Old World monkeys, New World monkeys, and strepsirrhines (lemurs and lorises). Morphology of crowns is described in all species in which the crown is completely formed at birth. The chapter ends with a brief discussion of the “perinatal” trajectory of dental development in selected primate species based on a comparison of species at different stages (fetal, neonatal, and older infant), including some at similar known ages.
Life-history theory pertains to the entirety of prenatal and postnatal ontogeny, and therefore morphology of the newborn offers an important perspective on how primates invest in their young. Generally, longer gestations yield larger neonates that are weaned later, become sexually mature later, and have larger brain masses. But can the variations in skeletal maturity are birth explained by life-history traits? Here, we examine new somatic data on 47 species of primates in light of life-history traits and modularity of growth among body regions. “Snout” length is uniformly diminutive in newborns compared to adults, although some scaling differences are already apparent at birth (relatively longer palates in strepsirrhines and tarsiers). Correlations of life-history characteristics indicate gestational length has a significant influence on facial functional matrices, with a positive correlation with permanent tooth and eye size, and a negative correlation with deciduous tooth germ size. We may as yet lack a broad enough perspective on brain size at birth, but some existing observations suggest primates preferentially prioritize prenatal brain growth over general somatic growth.