We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Observations of atmospheric reactive nitrogen (Nr) deposition are severely restricted in spatial extent and type. The chain of processes leading to atmospheric deposition emissions, atmospheric dispersion, chemical transformation and eventual loss from the atmosphere is extremely complex and therefore currently, observations can only address part of this chain.
Approaches
Modelling provides a way of estimating atmospheric transport and deposition of Nr at the European scale. A description of the different model types is provided.
Current deposition estimates from models are compared with observations from European air chemistry monitoring networks.
The main focus of the chapter is at the European scale; however, both local variability and and intercontinental Nr transfers are also addressed.
Key findings/state of knowledge
Atmospheric deposition is a major input of Nr for European terrestrial and freshwater ecosystems as well as coastal sea areas.
Models are key tools to integrate our understanding of atmospheric chemistry and transport, and are essential for estimating the spatial distribution of deposition, and to support the formulation of air pollution control strategies.
Our knowledge of the reliability of models for deposition estimates is, however, limited, since we have so few observational constraints on many key parameters.
Total Nr deposition estimates cannot be directly assessed because of a lack of measurements, especially of the Nr dry deposition component. Differences among European regional models can be significant, however, e.g. 30% in some areas, and substantially more than this for specific locations.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.