We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
About a fourth of Chinese adolescents developed clinically significant depressive symptoms following a disaster. However, little is known about whether and how post-trauma negative life events and a sense of security are associated with depressive symptoms in this population. This study examined the psychological experiences of Chinese young people who had experienced the 2013 Ya’an earthquake in Sichuan, China.
Methods:
This cross-sectional study was conducted in 2019. A total of 693 Chinese middle school students completed a questionnaire that measured their level of depressive symptoms, trauma exposure, stressful life events, and sense of security.
Results:
Results of hierarchical multiple-regression analyses showed that the level of life stress from stressful life events was positively associated with the level of depressive symptoms (β = 0.416, P < 0.001) and the level of the sense of security was negatively associated with the level of depressive symptoms (β = −0.352, P < 0.001) when analysis controlled for age, gender, and trauma exposure.
Conclusions:
These findings highlight the importance of considering the influence of life stressors and the sense of security in devising measures and strategies for the prevention of the manifestation of depression among young people, particularly those who were exposed to disasters.
While conservation practices promote soil health and reduce the negative environmental effects from agricultural production, their adoption rates are generally low. To facilitate farmer adoption, we carried out a survey to identify potential challenges faced by farmers regarding conservation tillage and cover crop adoption in the western margin of the US Corn Belt. We found farmers' top two concerns regarding conservation tillage were delayed planting, caused by slow soil warming in spring, and increased dependence on herbicide and fungicides. Narrow planting window and lack of time/labor were perceived by farmers as the two primary challenges for cover crop adoption. Some sense of place factors, including the commonly included dimensions of attachment, identity and dependence, played a role in farmers' perceived challenges. For example, respondents more economically dependent on farming perceived greater challenges. We found that farmers' challenge perceptions regarding reduced yield and lack of time/labor significantly decreased as years of usage increased, implying that time and experience could dilute some challenges faced by farmers. Our findings indicate that social network use, technical guidance and economic subsidies are likely to address the concerns of farmers and facilitate their adoption of conservation practices.
We explore people’s preferences for numbers in large proprietary data sets from two different lottery games. We find that choice is far from uniform, and exhibits some familiar and some new tendencies and biases. Players favor personally meaningful and situationally available numbers, and are attracted towards numbers in the center of the choice form. Frequent players avoid winning numbers from recent draws, whereas infrequent players chase these. Combinations of numbers are formed with an eye for aesthetics, and players tend to spread their numbers relatively evenly across the possible range.
We report a systematic experimental study of the mean temperature profile $\theta (\delta z)$ and temperature variance profile $\eta (\delta z)$ across a stable and immiscible liquid–liquid (water–FC770) interface formed in two-layer turbulent Rayleigh–Bénard convection. The measured $\theta (\delta z)$ and $\eta (\delta z)$ as a function of distance $\delta z$ away from the interface for different Rayleigh numbers are found to have the scaling forms $\theta (\delta z/\lambda )$ and $\eta (\delta z/\lambda )$, respectively, with varying thermal boundary layer (BL) thickness $\lambda$. By a careful comparison with the simultaneously measured BL profiles near a solid conducting surface, we find that the measured $\theta (\delta z)$ and $\eta (\delta z)$ near the liquid interface can be well described by the BL equations for a solid wall, so long as a thermal slip length $\ell _T$ is introduced to account for the convective heat flux passing through the liquid interface. Direct numerical simulation results further confirm that the turbulent thermal diffusivity $\kappa _t$ near a stable liquid interface has a complete cubic form, $\kappa _t(\xi )/\kappa \sim (\xi +\xi _0)^3$, where $\kappa$ is the molecular thermal diffusivity of the convecting fluid, $\xi =\delta z/\lambda$ is the normalized distance away from the liquid interface and $\xi _0$ is the normalized slip length associated with $\ell _T$.
In this study, we investigate the differences between two transient, three-dimensional, thermomechanically coupled ice-sheet models, namely, a first-order approximation model (FOM) and a ‘full’ Stokes ice-sheet model (FSM) under the same numerical framework. For all numerical experiments, we take the FSM outputs as the reference values and calculate the mean relative errors in the velocity and temperature fields for the FOM over 100 years. Four different boundary conditions (ice slope, geothermal heat flux, basal topography and basal sliding) are tested, and by changing these parameters, we verify the thermomechanical behavior of the FOM and discover that the velocity and temperature biases of the FOM generally increase with increases in the ice slope, geothermal heat flux, undulation amplitude of the ice base, and with the existence of basal sliding. In addition, the model difference between the FOM and FSM may accumulate over time, and the spatial distribution patterns of the relative velocity and temperature errors are in good agreement.
COVID-19 has long-term impacts on public mental health, while few research studies incorporate multidimensional methods to thoroughly characterise the psychological profile of general population and little detailed guidance exists for mental health management during the pandemic. This research aims to capture long-term psychological profile of general population following COVID-19 by integrating trajectory modelling approaches, latent trajectory pattern identification and network analyses.
Methods
Longitudinal data were collected from a nationwide sample of 18 804 adults in 12 months after COVID-19 outbreak in China. Patient Health Questionnaire-9, Generalised Anxiety Disorder-7 and Insomnia Severity Index were used to measure depression, anxiety and insomnia, respectively. The unconditional and conditional latent growth curve models were fitted to investigate trajectories and long-term predictors for psychological symptoms. We employed latent growth mixture model to identify the major psychological symptom trajectory patterns, and ran sparse Gaussian graphical models with graphical lasso to explore the evolution of psychopathological network.
Results
At 12 months after COVID-19 outbreak, psychological symptoms generally alleviated, and five psychological symptom trajectories with different demographics were identified: normal stable (63.4%), mild stable (15.3%), mild-increase to decrease (11.7%), mild-decrease to increase (4.0%) and moderate/severe stable (5.5%). The finding indicated that there were still about 5% individuals showing consistently severe distress and approximately 16% following fluctuating psychological trajectories, who should be continuously monitored. For individuals with persistently severe trajectories and those with fluctuating trajectories, central or bridge symptoms in the network were mainly ‘motor abnormality’ and ‘sad mood’, respectively. Compared with initial peak and late COVID-19 phase, aftermath of initial peak might be a psychologically vulnerable period with highest network connectivity. The central and bridge symptoms for aftermath of initial peak (‘appetite change’ and ‘trouble of relaxing’) were totally different from those at other pandemic phases (‘sad mood’).
Conclusions
This research identified the overall growing trend, long-term predictors, trajectory classes and evolutionary pattern of psychopathological network of psychological symptoms in 12 months after COVID-19 outbreak. It provides a multidimensional long-term psychological profile of the general population after COVID-19 outbreak, and accentuates the essentiality of continuous psychological monitoring, as well as population- and time-specific psychological management after COVID-19. We believe our findings can offer reference for long-term psychological management after pandemics.
In this study, a toroidal quartz (
$20\overline{2}3$
) crystal is designed for monochromatic X-ray imaging at 72.3°. The designed crystal produces excellent images of a laser-produced plasma emitting He-like Ti X-rays at 4.75 keV. Based on the simulations, the imaging resolutions of the spherical and toroidal crystals in the sagittal direction are found to be 15 and 5 μm, respectively. Moreover, the simulation results show that a higher resolution image of the source can be obtained by using a toroidal crystal. An X-ray backlight imaging experiment is conducted using 4.75 keV He-like Ti X-rays, a 3 × 3 metal grid, an imaging plate and a toroidal quartz crystal with a lattice constant of 2d = 0.2749 nm. The meridional and sagittal radii of the toroidal α-quartz crystal are 295.6 and 268.5 mm, respectively. A highly resolved image of the microgrid, with a spatial resolution of 10 μm, is obtained in the experiment. By using similar toroidal crystal designs, the application of a spatially resolved spectrometer with high-resolution X-ray imaging ability is capable of providing imaging data with the same magnification ratio in the sagittal and meridional planes.
To address the shortcomings of existing methods for rotorcraft searching, positioning, tracking and landing on a ship at sea, a dual-channel LIDAR searching, positioning, tracking and landing system (DCLSPTLS) is proposed in this paper, which utilises the multi-pulse laser echoes accumulation method and the physical phenomenon that the laser reflectivity of the ship deck in the near-infrared band is four orders of magnitude higher than that of the sea surface. The DCLSPTLS searching and positioning model, tracking model and landing model are established, respectively. The searching and positioning model can provide estimates of the azimuth angle, the distance of the ship relative to the rotorcraft and the ship's course. With the above parameters as inputs, the total tracking time and the direction of the rotorcraft tracking speed can be obtained by using the tracking model. The landing model can calculate the pitch and the roll angles of the ship's deck relative to the rotorcraft by using the least squares method and the laser irradiation coordinates. The simulation shows that the DCLSPTLS can realise the functions of rotorcraft searching, positioning, tracking and landing by using the above parameters. To verify the effectiveness of the DCLSPTLS, a functional test is performed using a rotorcraft and a model ship on a lake. The test results are consistent with the results of the simulation.
In the field of nutritional epidemiology, principal component analysis (PCA) has been used extensively in identifying dietary patterns. Recently, compositional data analysis (CoDA) has emerged as an alternative approach for obtaining dietary patterns. We aimed to directly compare and evaluate the ability of PCA and principal balances analysis (PBA), a data-driven method in CoDA, in identifying dietary patterns and their associations with the risk of hypertension.
Design:
Cohort study. A 24-h dietary recall questionnaire was used to collect dietary data. Multivariate logistic regression analysis was used to analyse the association between dietary patterns and hypertension.
Setting:
2004 and 2009 China Health and Nutrition Survey.
Participants:
A total of 3892 study participants aged 18–60 years were included as the subjects.
Results:
PCA and PBA identified five patterns each. PCA patterns comprised a linear combination of all food groups, whereas PBA patterns included several food groups with zero loadings. The coarse cereals pattern identified by PBA was inversely associated with hypertension risk (highest quintile: OR = 0·74 (95 % CI 0·57, 0·95); Pfor trend = 0·037). None of the five PCA patterns was associated with hypertension. Compared with the PCA patterns, the PBA patterns were clearly interpretable and accounted for a higher percentage of variance in food intake.
Conclusions:
Findings showed that PBA might be an appropriate and promising approach in dietary pattern analysis. Higher adherence to the coarse cereals dietary pattern was associated with a lower risk of hypertension. Nevertheless, the advantages of PBA over PCA should be confirmed in future studies.
In this paper, the assembly problem of circular-rectangular compound peg and hole parts in automatic assembly is proposed for the first time, and an automatic assembly method based on six-dimensional force sensor is summarized. Firstly, according to the quasi-static equilibrium condition, the contact states are summarized. It is concluded that there are 7 categories of 44 contact states in insertion stage and the forces conditions to maintain each contact state; Secondly, according to the analysis of the force/moment relationship, the jamming diagram is drawn, and the conditions of jamming are analyzed. Thirdly, the assembly strategy is discussed, including contact state recognition strategy, hole searching strategy, and pose adjustment strategy. Finally, combined with impedance control, the assembly theory is verified in ADAMS, and the assembly with minimum clearance of 0.1 mm is achieved.
Dissipative solitons have been realized in mode-locked fiber lasers in the theoretical framework of the Ginzburg–Landau equation and have significantly improved the pulse energy and peak power levels of such lasers. It is interesting to explore whether dissipative solitons exist in optical parametric oscillators in the framework of three-wave coupling equations in order to substantially increase the performance of optical parametric oscillators. Here, we demonstrate a temporal-filtering dissipative soliton in a synchronously pumped optical parametric oscillator. The temporal-gain filtering of the pump pulse combined with strong cascading nonlinearity and dispersion in the optical parametric oscillator enables the generation of a broad spectrum with a nearly linear chirp; consequently, a significantly compressed pulse and high peak power can be realized after dechirping outside the cavity. Furthermore, we realized, for the first time, dissipative solitons in an optical system with a negative nonlinear phase shift and anomalous dispersion, extending the parameter region of dissipative solitons. The findings may open a new research block for dissipative solitons and provide new opportunities for mid-infrared ultrafast science.
Listeriosis is a rare but serious foodborne disease caused by Listeria monocytogenes. This matched case–control study (1:1 ratio) aimed to identify the risk factors associated with food consumption and food-handling habits for the occurrence of sporadic listeriosis in Beijing, China. Cases were defined as patients from whom Listeria was isolated, in addition to the presence of symptoms, including fever, bacteraemia, sepsis and other clinical manifestations corresponding to listeriosis, which were reported via the Beijing Foodborne Disease Surveillance System. Basic patient information and possible risk factors associated with food consumption and food-handling habits were collected through face-to-face interviews. One hundred and six cases were enrolled from 1 January 2018 to 31 December 2020, including 52 perinatal cases and 54 non-perinatal cases. In the non-perinatal group, the consumption of Chinese cold dishes increased the risk of infection by 3.43-fold (95% confidence interval 1.27–9.25, χ2 = 5.92, P = 0.02). In the perinatal group, the risk of infection reduced by 95.2% when raw and cooked foods were well-separated (χ2 = 5.11, P = 0.02). These findings provide important scientific evidence for preventing infection by L. monocytogenes and improving the dissemination of advice regarding food safety for vulnerable populations.
We report a systematic study of the collective effect of thermal plumes on the probability density function (p.d.f.) $P(\delta T)$ of temperature fluctuations $\delta T(t)$ in turbulent Rayleigh–Bénard convection. By decomposing $\delta T(t)$ into four basic fluctuation modes associated with single and multiple warm and cold plumes and a turbulent background, we derive an analytic form of $P(\delta T)$ based on the convolutions of the five independent modes. To test the derived form of $P(\delta T)$ in the multiple-plume regions, where the thermal plumes are heavily populated, we conduct time series measurements of temperature fluctuations in two convection cells; one is a vertical thin disk and the other is an upright cylinder of aspect ratio unity. For a given normalized position in most regions of the convection cell, all of the measured p.d.f.s $P(\delta T)$ for different Rayleigh numbers fall onto a single master curve, once $\delta T$ is normalized by its root-mean-square (r.m.s.) value $\sigma _T$. It is found that the measured $P(\delta T/\sigma _T)$ at different locations along the symmetric horizontal and vertical axes of the convection cells can all be well described by the derived form of $P(\delta T/\sigma _T)$. The fitted values of the parameters associated with the number of plumes in multiple plume clusters and their relative strengths and degrees of intermittency are closely linked to the spatial distribution of thermal plumes and local dynamics of the large-scale circulation in a closed convection cell. Our work thus provides a unified theoretical approach for understanding scalar p.d.f.s in a turbulent field, which is very useful not only for the present study but also for the study of many turbulent mixing problems of practical interest.
Celestial navigation is an important means of maritime navigation; it can automatically achieve inertially referenced positioning and orientation after a long period of development. However, the impact of different accuracy of observations and the influence of nonstationary states, such as ship speed change and steering, are not taken into account in existing algorithms. To solve this problem, this paper proposes an adaptively robust maritime celestial navigation algorithm, in which each observation value is given an equivalent weight according to the robust estimation theory, and the dynamic balance between astronomical observation and prediction values of vessel motion is adjusted by applying the adaptive factor. With this system, compared with the frequently used least square method and extended Kalman filter algorithm, not only are the real-time and high-precision navigation parameters, such as position, course, and speed for the vessel, calculated simultaneously, but also the influence of abnormal observation and vessel motion status change could be well suppressed.
Sarcopenia is a core contributor to several health consequences, including falls, fractures, physical limitations and disability. The pathophysiological processes of sarcopenia may be counteracted with the proper diet, delaying sarcopenia onset. Dietary pattern analysis is a whole diet approach used to investigate the relationship between diet and sarcopenia. Here, we aimed to investigate this relationship in an elderly Chinese population. A cross-sectional study with 2423 participants aged more than 60 years was performed. Sarcopenia was defined based on the guidelines of the Asian Working Group for Sarcopenia, composed of low muscle mass plus low grip strength and/or low gait speed. Dietary data were collected using a FFQ that included questions on 100 food items along with their specified serving sizes. Three dietary patterns were derived by factor analysis: sweet pattern, vegetable pattern and animal food pattern. The prevalence of sarcopenia was 16·1 %. The higher vegetable pattern score and animal food pattern score were related to lower prevalence of sarcopenia (Ptrend = 0·006 and < 0·001, respectively); the multivariate-adjusted OR of the prevalence of sarcopenia in the highest v. lowest quartiles were 0·54 (95 % CI 0·34, 0·86) and 0·50 (95 % CI 0·33, 0·74), separately. The sweet pattern score was not significantly related to the prevalence of sarcopenia. The present study showed that vegetable pattern and animal food pattern were related to a lower prevalence of sarcopenia in Chinese older adults. Further studies are required to clarify these findings.
The newly discovered Bibole banded iron formations are located within the Nyong Group at the northwest of the Congo Craton in Cameroon. The Bibole banded iron formations comprise oxide (quartz-magnetite) and mixed oxide-silicate (chlorite-magnetite) facies banded iron formations, which are interbedded with felsic gneiss, phyllite and quartz-chlorite schist. Geochemical studies of the quartz-magnetite banded iron formations and chlorite-magnetite banded iron formations reveal that they are composed of >95 wt % Fe2O3 plus SiO2 and have low concentrations of Al2O3, TiO2 and high field strength elements. This indicates that the Bibole banded iron formations were not significantly contaminated by detrital materials. Post-Archaean Australian Shale–normalized rare earth element and yttrium patterns are characterized by positive La and Y anomalies, a relative depletion of light rare earth elements compared to heavy rare earth elements and positive Eu anomalies (average of 1.86 and 1.15 for the quartz-magnetite banded iron formations and chlorite-magnetite banded iron formations, respectively), suggesting the influence of low-temperature hydrothermal fluids and seawater. The quartz-magnetite banded iron formations display true negative Ce anomalies, while the chlorite-magnetite banded iron formations lack Ce anomalies. Combined with their distinct Eu anomalies consistent with Algoma- and Superior-type banded iron formations, we suggest that the Bibole banded iron formations were deposited under oxic to suboxic conditions in an extensional basin. SIMS U–Pb data indicate that the Bibole banded iron formations were deposited at 2466 Ma and experienced metamorphism and metasomatism at 2078 Ma during the Eburnean/Trans-Amazonian orogeny. Overall, these findings suggest that the studied banded iron formations probably marked the onset of the rise of atmospheric oxygen, also known as the Great Oxidation Event in the Congo Craton.
Experimental findings on rotational grazing (RG) trials have generally differed from producer observations of RG outcomes on commercial scale ranches. Factors such as small plot size, short duration trials and relatively rigid grazing management that lacks responsiveness to the dynamic and complex social-ecological systems in grazing trials could all contribute to this disparity in outcomes. These differences call for a better understanding of producer perceptions of RG benefits. To fill this knowledge gap, we surveyed 4500 producers from the Northern and Southern Great Plains of the USA. Among the 875 respondents, 40.5% reported that they used continuous grazing (CG), 52.7% implemented RG management in an extensive manner, while 6.8% adopted management intensive grazing. Compared with CG users, adopters of RG in its extensive and intensive form reported an average annual increase of grazing season by 7.6 and 39.3 days, respectively. When controlling for producer demographics, ranch management goals and other rancher characteristics, we found soil and climate heterogeneity significantly affected the perceived relative benefits of RG vs CG strategies. Therefore, instead of focusing on whether RG outperforms CG per se, future research could focus on comparison of RG benefits under different management intensity levels and identifying soil and climate conditions where RG benefits are more noticeable.
This paper is concerned with the asymptotic propagations for a nonlocal dispersal population model with shifting habitats. In particular, we verify that the invading speed of the species is determined by the speed c of the shifting habitat edge and the behaviours near infinity of the species’ growth rate which is nondecreasing along the positive spatial direction. In the case where the species declines near the negative infinity, we conclude that extinction occurs if c > c*(∞), while c < c*(∞), spreading happens with a leftward speed min{−c, c*(∞)} and a rightward speed c*(∞), where c*(∞) is the minimum KPP travelling wave speed associated with the species’ growth rate at the positive infinity. The same scenario will play out for the case where the species’ growth rate is zero at negative infinity. In the case where the species still grows near negative infinity, we show that the species always survives ‘by moving’ with the rightward spreading speed being either c*(∞) or c*(−∞) and the leftward spreading speed being one of c*(∞), c*(−∞) and −c, where c*(−∞) is the minimum KPP travelling wave speed corresponding to the growth rate at the negative infinity. Finally, we give some numeric simulations and discussions to present and explain the theoretical results. Our results indicate that there may exists a solution like a two-layer wave with the propagation speeds analytically determined for such type of nonlocal dispersal equations.
Introducing cover crops (CC) in annual cropping systems can promote nutrient cycling and improve soil health. However, impacts of CC on soil health indicators vary and depend on the duration of CC, cropping systems, and other environmental conditions. We performed an on-farm assessment of cover cropping impacts on soil health indicators including C and N pools, enzyme activities, and microbial community structure under different no-till maize-based cropping systems (maize (Zea mays L.)–soybean (Glycine max L.) [CS], CS-winter wheat (Triticum aestivum L.) [CSWw], and maize-oats (Avena sativa L.) [CO]). At five farms, fields with different durations of CC were compared to adjacent no CC (NCC) fields. In general, long-term CC enhanced the soil health parameters compared to NCC. Long-term (20-year) winter rye CC had higher water-extractable C and N content, enzyme activities (β-glucosidase (1.2 times greater), urease (5.5 times greater), acid (1.5 times greater) and alkaline (4 times greater) phosphatase, arylsulfatase (0.8 times greater) and fluorescein diacetate (FDA) (0.7 times greater)) and soil bacterial community abundance (1.2 times greater). Short-term (3–6 years) legume and grass CC mixtures increased β-glucosidase (0.9 times), acid (0.7 times) and alkaline (1.5 times) phosphatase, arylsulfatase (3 times), FDA (0.8 times) activities and total phospholipid fatty acid (1.6 times) concentration. However, short-term (3–6 years) winter rye, legume and brassica mixtures did not significantly alter soil microbial community structure. This study showed that implementation of CC for >6 years promoted C, N, S, and P cycling that are beneficial to soil health in maize-based cropping systems.