We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This study aimed to demonstrate the utilization value of 1PN embryos. The 1PN zygotes collected from December 2021 to September 2022 were included in this study. The embryo development, the pronuclear characteristics, and the genetic constitutions were investigated. The overall blastocyst formation and good-quality blastocyst rates in 1PN zygotes were 22.94 and 16.24%, significantly lower than those of 2PN zygotes (63.25 and 50.23%, respectively, P = 0.000). The pronuclear characteristics were found to be correlated with the developmental potential. When comparing 1PN zygotes that developed into blastocysts to those that arrested, the former exhibited a significantly larger area (749.49 ± 142.77 vs. 634.00 ± 119.05, P = 0.000), a longer diameter of pronuclear (29.81 ± 3.08 vs. 27.30 ± 3.00, P = 0.000), and a greater number of nucleolar precursor body (NPB) (11.56 ± 3.84 vs. 7.19 ± 2.73, P = 0.000). Among the tested embryos, the diploidy euploidy rate was significantly higher in blastocysts in comparison with the arrested embryos (66.67 vs. 11.76%, P = 0.000), which was also significantly higher in IVF-1PN blastocysts than in ICSI-1PN blastocysts (75.44 vs. 25.00%, P = 0.001). However, the pronuclear characteristics were not found to be linked to the chromosomal ploidy once they formed blastocysts.
In summary, while the developmental potential of 1PN zygotes is reduced, our study shows that, in addition to the reported pronuclear area and diameter, the number of NPB is also associated with their developmental potential. The 1PN blastocysts exhibit a high diploidy euploidy rate, are recommend to be clinically used post genetic testing, especially for patients who do not have other 2PN embryos available.
This study investigates practicing clinician and staff perspectives on potential protocol modifications for the “Nasal Irrigation, Oral Antibiotics, and Subgroup Targeting for Effective Management of Acute Sinusitis” (NOSES) study, a pragmatic randomized controlled trial aiming at improving acute rhinosinusitis management. Focus groups with clinicians and staff at the pretrial stage recommended expanding participant age inclusion criteria, incorporating patients with COVID-19, and shortening the supportive care phase. Participants also discussed patient engagement and recruitment strategies. These practical insights contribute to optimizing the NOSES trial design and underscore the value of qualitative inquiries and healthcare stakeholder engagement in informing clinical trial design.
Purple nutsedge (Cyperus rotundus L.) is one of the world’s resilient upland weeds, primarily spreading through its tubers. Its emergence in rice (Oryza sativa L.) fields has been increasing, likely due to changing paddy-farming practices. This study aimed to investigate how C. rotundus, an upland weed, can withstand soil flooding and become a problematic weed in rice fields. The first comparative analysis focused on the survival and recovery characteristics of growing and mature tubers of C. rotundus exposed to soil-flooding conditions. Notably, mature tubers exhibited significant survival and recovery abilities in these environments. Based on this observation, further investigation was carried out to explore the morphological structure, nonstructural carbohydrates, and respiratory mechanisms of mature tubers in response to prolonged soil flooding. Over time, the mature tubers did not form aerenchyma but instead gradually accumulated lignified sclerenchymal fibers, with lignin content also increasing. After 90 d, the lignified sclerenchymal fibers and lignin contents were 4.0 and 1.1 times higher than those in the no soil-flooding treatment. Concurrently, soluble sugar content decreased while starch content increased, providing energy storage, and alcohol dehydrogenase activity rose to support anaerobic respiration via alcohol fermentation. These results indicated that mature tubers survived in soil-flooding conditions by adopting a low-oxygen quiescence strategy, which involves morphological adaptations through the development of lignified sclerenchymal fibers, increased starch reserves for energy storage, and enhanced anaerobic respiration. This mechanism likely underpins the flooding tolerance of mature C. rotundus tubers, allowing them to endure unfavorable conditions and subsequently germinate and grow once flooding subsides. This study provides a preliminary explanation of the mechanism by which mature tubers of C. rotundus from the upland areas confer flooding tolerance, shedding light on the reasons behind this weed’s increasing presence in rice fields.
The Argentine ant (Linepithema humile) and the little fire ant (Wasmannia auropunctata) are among the top 100 invasive alien species globally, causing significant ecological and economic harm. Therefore, it is crucial to study their potential geographic distribution worldwide. This study aimed to predict their global distribution under current and future climate conditions. We used distribution data from various sources, including CABI, GBIF, and PIAKey, and key climate variables selected from 19 environmental factors to model their potential geographic distribution using MaxEnt. The AUC values were 0.925 and 0.937 for L. humile and W. auropunctata, respectively, indicating good predictive performance. Suitable areas for L. humile were mainly in southern North America, northern South America, Europe, central Asia, southern Oceania, and parts of Africa, while W. auropunctata suitable areas were mostly in southern North America, most of South America, a small part of Europe, southern Asia, central Africa, and some parts of Oceania. Under climate change scenario, suitable areas for L. humile increased, while highly suitable areas for W. auropunctata decreased. The top four countries with the largest areas of overlapping suitable habitat under current climate were Brazil, China, Australia, and Argentina, while under future SSP585 climate scenario, the top four countries were Brazil, China, Indonesia, and Argentina. Some countries, such as Estonia and Finland, will see an overlapping adaptation area under climate change. In conclusion, this study provides insight into controlling the spread and harm of L. humile and W. auropunctata.
We introduce the notion of completed $F$-crystals on the absolute prismatic site of a smooth $p$-adic formal scheme. We define a functor from the category of completed prismatic $F$-crystals to that of crystalline étale $\mathbf {Z}_p$-local systems on the generic fiber of the formal scheme and show that it gives an equivalence of categories. This generalizes the work of Bhatt and Scholze, which treats the case of a mixed characteristic complete discrete valuation ring with perfect residue field.
Childhood maltreatment is an established risk factor for psychopathology. However, it remains unclear how childhood traumatic events relate to mental health problems and how the brain is involved. This study examined the serial mediation effect of brain morphological alterations and emotion-/reward-related functions on linking the relationship from maltreatment to depression. We recruited 156 healthy adolescents and young adults and an additional sample of 31 adolescents with major depressive disorder for assessment of childhood maltreatment, depressive symptoms, cognitive reappraisal and anticipatory/consummatory pleasure. Structural MRI data were acquired to identify maltreatment-related cortical and subcortical morphological differences. The mediation models suggested that emotional maltreatment of abuse and neglect, was respectively associated with increased gray matter volume in the ventral striatum and greater thickness in the middle cingulate cortex. These structural alterations were further related to reduced anticipatory pleasure and disrupted cognitive reappraisal, which contributed to more severe depressive symptoms among healthy individuals. The above mediating effects were not replicated in our clinical group partly due to the small sample size. Preventative interventions can target emotional and reward systems to foster resilience and reduce the likelihood of future psychiatric disorders among individuals with a history of maltreatment.
Modified kaolinites possess excellent adsorption properties and, therefore, are regarded widely as potential catalytic components. The use of modified kaolinites as a catalytic component for Fischer–Tropsch synthesis (FTS) has remained unexplored, however. In the current study, delaminated and pit-rich nano-kaolinite was prepared via acid treatment of N-methylformamide (NMF)-intercalated kaolinite (intercalation-etching strategy), and was used as a support to prepare a cobalt-based FTS catalyst (denoted as 15%-Co-HNKln). Compared with other FTS catalysts, the supports for which were raw kaolinite or directly acid-treated kaolinite, the 15%-Co-HNKln showed several advantages such as large specific surface area, dispersed Co particles with small particle size, more new active sites, and significant surface acidity. Given the aforementioned advantages, the 15%-Co-HNKln catalyst demonstrated very good FTS performance. Compared with that of the raw kaolinite-supported FTS catalyst, the CO conversion rate and C5–C12 hydrocarbon selectivity of 15%-Co-HNKln increased by 20% and 15%, respectively.
Waste brownfield-site soils contaminated with heavy metals such as Zn and Cr are of critical environmental concern because of the rapid urbanization and industrialization that is occurring in China. Thermal treatment can fix heavy metals in specific mineral structures, which might be a promising technology for remediation and reutilization of the metal-contaminated soils. The objective of the present study was to elucidate the stabilization mechanisms of Zn and Cr through thermal treatment of mixtures of ZnO + Cr2O3 to form ZnCr2O4 and to confirm that Zn and Cr were incorporated simultaneously into the spinel structure. The incorporation efficiency for Zn was quantified, with the value ranging from 70.6 to 100% over the temperature range 700–1300°C. Leaching results further confirmed that ZnCr2O4 spinel was a superior product for Zn and Cr immobilization. Then, by artificially sintering Zn- and Cr-enriched soils, both Zn and Cr were immobilized effectively (with three orders of magnitude reduction in Zn leachability) in the ZnCr2O4 spinel as the predominant product phase. In addition, multiple heavy metals such as Zn, Cu, and Cr in the actual brownfield-site soils were well immobilized after sintering, which confirmed the potential for practical application of the thermal treatment technology utilized in this study.
Dysmenorrhea is associated with epilepsy. Existing evidence is mostly limited to observational studies, which are liable to confounding and bias. This study investigated the causal relevance of dysmenorrhea on epilepsy using Mendelian randomization (MR). We extracted instrumental variants for dysmenorrhea and epilepsy from published genomewide association study data, focusing on individuals of East Asian descent. A comprehensive suite of MR estimations and sensitivity analyses was performed to ensure the robustness of the findings. Each outcome database was analyzed separately in both directions. For dysmenorrhea and epilepsy, 7 and 3 genetic variants respectively were selectively extracted as instrumental variants. The results suggest that dysmenorrhea is causally associated with an elevated risk of epilepsy (inverse variance weighted [IVW]: OR = 1.26; 95% CI [1.07, 1.47]; p = 4.42 × 10−3); conversely, no strong evidence was found to corroborate that epilepsy exerts a causal effect on the incidence of dysmenorrhea (IVW: OR = 1.04; 95% CI [0.82, 1.33]; p = .72). These findings provide novel insights into the causal relationship between dysmenorrhea and epilepsy, which may have implications for clinical decision-making in patients with epilepsy and dysmenorrhea.
A local COVID-19 outbreak with two community clusters occurred in a large industrial city, Shaoxing, China, in December 2021 after serial interventions were imposed. We aimed to understand the reason by analysing the characteristics of the outbreak and evaluating the effects of phase-adjusted interventions. Publicly available data from 7 December 2021 to 25 January 2022 were collected to analyse the epidemiological characteristics of this outbreak. The incubation period was estimated using Hamiltonian Monte Carlo method. A well-fitted extended susceptible-exposed-infectious-recovered model was used to simulate the impact of different interventions under various combination of scenarios. There were 387 SARS-CoV-2-infected cases identified, and 8.3% of them were initially diagnosed as asymptomatic cases. The estimated incubation period was 5.4 (95% CI 5.2–5.7) days for all patients. Strengthened measures of comprehensive quarantine based on tracing led to less infections and a shorter duration of epidemic. With a same period of incubation, comprehensive quarantine was more effective in containing the transmission than other interventions. Our findings reveal an important role of tracing and comprehensive quarantine in blocking community spread when a cluster occurred. Regions with tense resources can adopt home quarantine as a relatively affordable and low-impact intervention measure compared with centralized quarantine.
Three-dimensional (3-D) wake transitions of a steady flow past two side-by-side circular cylinders are investigated through Floquet analysis and direct numerical simulations (DNS) over the gap-to-diameter ratio $g^*$ up to 3.5 and Reynolds number ${\textit {Re}}$ up to 400. When the flows behind two cylinders form in-phase and anti-phase wakes at large $g^*$, the wake transition is similar to the isolated cylinder counterpart, with the critical ${\textit {Re}}$ for the onset of 3-D transition (${\textit {Re}}_{cr-1}$) happens at around 180. At small $g^*$, 3-D transition becomes interestingly complex due to the distinct characteristics formed in base flows. The ${\textit {Re}}_{cr-1}$ suddenly drops to around 60–100 and forms distinct variation trends with $g^*$. Precisely, the ${\textit {Re}}_{cr-1}$ of the single symmetric wake (SS, $g^*\lessapprox 0.25$) is more than half of the isolated cylinder counterpart due to the large length scale of the SS wake. Only mode A is detected in SS. In the asymmetric single wake (ASS, $g^* \approx 0.25\unicode{x2013}0.6$) and flip-flop wake (FF, $g^* \approx 0.6\unicode{x2013}1.8$), the 3-D transition develops at ${\textit {Re}} \approx 103\unicode{x2013}60$ and 75–60, respectively. The decrease in ${\textit {Re}}_{cr-1}$ with increasing $g^*$ is because of the increased level of wake asymmetry in ASS and irregular vortex shedding in FF. Floquet analysis predicts two new unstable modes, namely mode A$'$ and subharmonic mode C$'$, of ASS. Both modes are transient features in 3-D DNS and the flow eventually saturates into a new 3-D mode, mode ASS. The gap flow of mode ASS is distinctly characterised by its time-independent spanwise waviness structure that is deflected towards different transverse directions with a long wavelength of about $14$ cylinder diameters. The 3-D mode of the FF is irregular both temporally and spatially. Variations of ${\textit {Re}}_{cr-1}$ with $g^*$, the characteristics and the physical mechanisms of each 3-D mode are discussed in this study.
This paper mainly concerns the KAM persistence of the mapping $\mathscr {F}:\mathbb {T}^{n}\times E\rightarrow \mathbb {T}^{n}\times \mathbb {R}^{n}$ with intersection property, where $E\subset \mathbb {R}^{n}$ is a connected closed bounded domain with interior points. By assuming that the frequency mapping satisfies certain topological degree condition and weak convexity condition, we prove some Moser-type results about the invariant torus of mapping $\mathscr {F}$ with frequency-preserving under small perturbations. To our knowledge, this is the first approach to Moser's theorem with frequency-preserving. Moreover, given perturbed mappings over $\mathbb {T}^n$, it is shown that such persistence still holds when the frequency mapping and perturbations are only continuous about parameter beyond Lipschitz or even Hölder type. We also touch the parameter without dimension limitation problem under such settings.
This paper presents a language, Alda, that supports all of logic rules, sets, functions, updates, and objects as seamlessly integrated built-ins. The key idea is to support predicates in rules as set-valued variables that can be used and updated in any scope, and support queries using rules as either explicit or implicit automatic calls to an inference function. We have defined a formal semantics of the language, implemented a prototype compiler that builds on an object-oriented language that supports concurrent and distributed programming and on an efficient logic rule system, and successfully used the language and implementation on benchmarks and problems from a wide variety of application domains. We describe the compilation method and results of experimental evaluation.
We investigate the maximal finite length submodule of the Breuil–Kisin prismatic cohomology of a smooth proper formal scheme over a $p$-adic ring of integers. This submodule governs pathology phenomena in integral $p$-adic cohomology theories. Geometric applications include a control, in low degrees and mild ramifications, of (1) the discrepancy between two naturally associated Albanese varieties in characteristic $p$, and (2) the kernel of the specialization map in $p$-adic étale cohomology. As an arithmetic application, we study the boundary case of the theory due to Fontaine and Laffaille, Fontaine and Messing, and Kato. Also included is an interesting example, generalized from a construction in Bhatt, Morrow and Scholze's work, which illustrates some of our theoretical results being sharp, and negates a question of Breuil.
Perceptual information includes sensorimotor and emotional experience regarding the multimodality of the perceptual system. The current study provides an image-based visual analysis on the embodiment of color metaphors through the investigation of (i) the perceptual (dis)similarities between the literal and metaphorical meanings of the Chinese color terms hēi ‘black’ and bái ‘white’ and (ii) the influence of emotional valence on the degree of their perceptual (dis)similarities. Specifically, 24 concepts in three semantic domains were represented as eight-dimensional vectors based on the color information extracted from online images, including two color concepts of black and white, 20 abstract concepts referring to 8 metaphorical meanings of hēi and 12 metaphorical meanings of bái, and two abstract concepts referring to positive and negative affective polarity. Statistical analyses show that (i) the literal and metaphorical meanings of hēi and bái are perceptually distinguishable given their significant perceptual (dis)similarities and (ii) the observed perceptual distinguishability cannot be solely attributed to the (in)consistency of emotional valence associated with the senses. The present study provides nonlinguistic evidence for the embodiment of color metaphors in the Chinese context with an empirical approach that can simultaneously capture the metaphorical mappings and affective associations among cross-domain concepts with sensory data.
The 4H-SiC crystal is found to have great potential in terahertz generation via nonlinear optical frequency conversion due to its extremely high optical damage threshold, wide transparent range, etc. In this paper, optical rectification (OR) with tilted-pulse-front (TPF) setting based on the 4H-SiC crystal is proposed. The theory accounts for the optimization of incident pulse pre-chirping in the TPF OR process under high-intensity femtosecond laser pumping. Compared with the currently recognized LiNbO3-based TPF OR, which generates a single-cycle terahertz pulse within 3 THz, 4H-SiC demonstrates a significant advantage in producing ultra-widely tunable (up to over 14 THz, TPF angle 31°–38°) terahertz waves with high efficiency (~10–2) and strong field (~MV/cm). Besides, the spectrum characteristics, as well as the evolution from single- to multi-cycle terahertz pulses can be modulated flexibly by pre-chirping. The simulation results show that 4H-SiC enables terahertz frequency extending to an unprecedent range by OR, which has extremely important potential in strong-field terahertz applications.
It is unknown how much variation in adult mental health problems is associated with differences between societal/cultural groups, over and above differences between individuals.
Methods
To test these relative contributions, a consortium of indigenous researchers collected Adult Self-Report (ASR) ratings from 16 906 18- to 59-year-olds in 28 societies that represented seven culture clusters identified in the Global Leadership and Organizational Behavioral Effectiveness study (e.g. Confucian, Anglo). The ASR is scored on 17 problem scales, plus a personal strengths scale. Hierarchical linear modeling estimated variance accounted for by individual differences (including measurement error), society, and culture cluster. Multi-level analyses of covariance tested age and gender effects.
Results
Across the 17 problem scales, the variance accounted for by individual differences ranged from 80.3% for DSM-oriented anxiety problems to 95.2% for DSM-oriented avoidant personality (mean = 90.7%); by society: 3.2% for DSM-oriented somatic problems to 8.0% for DSM-oriented anxiety problems (mean = 6.3%); and by culture cluster: 0.0% for DSM-oriented avoidant personality to 11.6% for DSM-oriented anxiety problems (mean = 3.0%). For strengths, individual differences accounted for 80.8% of variance, societal differences 10.5%, and cultural differences 8.7%. Age and gender had very small effects.
Conclusions
Overall, adults' self-ratings of mental health problems and strengths were associated much more with individual differences than societal/cultural differences, although this varied across scales. These findings support cross-cultural use of standardized measures to assess mental health problems, but urge caution in assessment of personal strengths.
About a fourth of Chinese adolescents developed clinically significant depressive symptoms following a disaster. However, little is known about whether and how post-trauma negative life events and a sense of security are associated with depressive symptoms in this population. This study examined the psychological experiences of Chinese young people who had experienced the 2013 Ya’an earthquake in Sichuan, China.
Methods:
This cross-sectional study was conducted in 2019. A total of 693 Chinese middle school students completed a questionnaire that measured their level of depressive symptoms, trauma exposure, stressful life events, and sense of security.
Results:
Results of hierarchical multiple-regression analyses showed that the level of life stress from stressful life events was positively associated with the level of depressive symptoms (β = 0.416, P < 0.001) and the level of the sense of security was negatively associated with the level of depressive symptoms (β = −0.352, P < 0.001) when analysis controlled for age, gender, and trauma exposure.
Conclusions:
These findings highlight the importance of considering the influence of life stressors and the sense of security in devising measures and strategies for the prevention of the manifestation of depression among young people, particularly those who were exposed to disasters.
COVID-19 has long-term impacts on public mental health, while few research studies incorporate multidimensional methods to thoroughly characterise the psychological profile of general population and little detailed guidance exists for mental health management during the pandemic. This research aims to capture long-term psychological profile of general population following COVID-19 by integrating trajectory modelling approaches, latent trajectory pattern identification and network analyses.
Methods
Longitudinal data were collected from a nationwide sample of 18 804 adults in 12 months after COVID-19 outbreak in China. Patient Health Questionnaire-9, Generalised Anxiety Disorder-7 and Insomnia Severity Index were used to measure depression, anxiety and insomnia, respectively. The unconditional and conditional latent growth curve models were fitted to investigate trajectories and long-term predictors for psychological symptoms. We employed latent growth mixture model to identify the major psychological symptom trajectory patterns, and ran sparse Gaussian graphical models with graphical lasso to explore the evolution of psychopathological network.
Results
At 12 months after COVID-19 outbreak, psychological symptoms generally alleviated, and five psychological symptom trajectories with different demographics were identified: normal stable (63.4%), mild stable (15.3%), mild-increase to decrease (11.7%), mild-decrease to increase (4.0%) and moderate/severe stable (5.5%). The finding indicated that there were still about 5% individuals showing consistently severe distress and approximately 16% following fluctuating psychological trajectories, who should be continuously monitored. For individuals with persistently severe trajectories and those with fluctuating trajectories, central or bridge symptoms in the network were mainly ‘motor abnormality’ and ‘sad mood’, respectively. Compared with initial peak and late COVID-19 phase, aftermath of initial peak might be a psychologically vulnerable period with highest network connectivity. The central and bridge symptoms for aftermath of initial peak (‘appetite change’ and ‘trouble of relaxing’) were totally different from those at other pandemic phases (‘sad mood’).
Conclusions
This research identified the overall growing trend, long-term predictors, trajectory classes and evolutionary pattern of psychopathological network of psychological symptoms in 12 months after COVID-19 outbreak. It provides a multidimensional long-term psychological profile of the general population after COVID-19 outbreak, and accentuates the essentiality of continuous psychological monitoring, as well as population- and time-specific psychological management after COVID-19. We believe our findings can offer reference for long-term psychological management after pandemics.
The fish-eye star sensor with a field of view (FOV) of 180° is an important piece of equipment for attitude determination, which improves the visibility of stars significantly. However, it also brings the star identification (star-ID) difficulties because of imprecise calibrations. Thus, a fish-eye star-ID algorithm supported by the integration of the precise point positioning/inertial navigation system (PPP/INS) is proposed. At first, a reference star map is generated in combination with the distortion model of the fish-eye camera based on the position and attitude information from the PPP/INS. Then the star points are extracted in a specific neighbourhood of the reference star points. Subsequently, the extracted star points are individually tested and identified according to angular distance error. Finally, the real-time precise attitude is determined based on the star-ID results. Experimental results show that, 270–310 stars can be identified in a fish-eye star map with an average time of 0.03 s if the initial attitude error is smaller than 1.5° and an attitude determination accuracy better than 10″ can be achieved by support from PPP/INS.