We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
A simple, portable capillary refill time (CRT) simulator is not commercially available. This device would be useful in mass-casualty simulations with multiple volunteers or mannequins depicting a variety of clinical findings and CRTs. The objective of this study was to develop and evaluate a prototype CRT simulator in a disaster simulation context.
A CRT prototype simulator was developed by embedding a pressure-sensitive piezo crystal, and a single red light-emitting diode (LED) light was embedded, within a flesh-toned resin. The LED light was programmed to turn white proportionate to the pressure applied, and gradually to return to red on release. The time to color return was adjustable with an external dial. The prototype was tested for feasibility among two cohorts: emergency medicine physicians in a tabletop exercise and second year medical students within an actual disaster triage drill. The realism of the simulator was compared to video-based CRT, and participants used a Visual Analog Scale (VAS) ranging from “completely artificial” to “as if on a real patient.” The VAS evaluated both the visual realism and the functional (eg, tactile) realism. Accuracy of CRT was evaluated only by the physician cohort. Data were analyzed using parametric and non-parametric statistics, and mean Cohen’s Kappas were used to describe inter-rater reliability.
The CRT simulator was generally well received by the participants. The simulator was perceived to have slightly higher functional realism (P=.06, P=.01) but lower visual realism (P=.002, P=.11) than the video-based CRT. Emergency medicine physicians had higher accuracy on portrayed CRT on the simulator than the videos (92.6% versus 71.1%; P<.001). Inter-rater reliability was higher for the simulator (0.78 versus 0.27; P<.001).
A simple, LED-based CRT simulator was well received in both settings. Prior to widespread use for disaster triage training, validation on participants’ ability to accurately triage disaster victims using CRT simulators and video-based CRT simulations should be performed.
Using the pediatric version of the Simple Triage and Rapid Treatment (JumpSTART) algorithm for the triage of pediatric patients in a mass-casualty incident (MCI) requires assessing the results of each step and determining whether to move to the next appropriate action. Inappropriate application can lead to performance of unnecessary actions or failure to perform necessary actions.
To report overall accuracy and time required for triage, and to assess if the performance of unnecessary steps, or failure to perform required steps, in the triage algorithm was associated with inaccuracy of triage designation or increased time to reach a triage decision.
Medical students participated in an MCI drill in which they triaged both live actors portraying patients and computer-based simulated patients to the four triage levels: minor, delayed, immediate, and expectant. Their performance was timed and compared to intended triage designations and a priori determined critical actions.
Thirty-three students completed 363 scenarios. The overall accuracy was 85.7% and overall mean time to assign a triage designation was 70.4 seconds, with decreasing times as triage acuity level decreased. In over one-half of cases, the student omitted at least one action and/or performed at least one action that was not required. Each unnecessary action increased time to triage by a mean of 8.4 seconds and each omitted action increased time to triage by a mean of 5.5 seconds.
Increasing triage level, performance of inappropriate actions, and omission of recommended actions were all associated with increasing time to perform triage.
Multiple modalities for simulating mass-casualty scenarios exist; however, the ideal modality for education and drilling of mass-casualty incident (MCI) triage is not established.
Medical student triage accuracy and time to triage for computer-based simulated victims and live moulaged actors using the pediatric version of the Simple Triage and Rapid Treatment (JumpSTART) mass-casualty triage tool were compared, anticipating that student performance and experience would be equivalent.
The victim scenarios were created from actual trauma records from pediatric high-mechanism trauma presenting to a participating Level 1 trauma center. The student-reported fidelity of the two modalities was also measured. Comparisons were done using nonparametric statistics and regression analysis using generalized estimating equations.
Thirty-three students triaged four live patients and seven computerized patients representing a spectrum of minor, immediate, delayed, and expectant victims. Of the live simulated patients, 92.4% were given accurate triage designations versus 81.8% for the computerized scenarios (P=.005). The median time to triage of live actors was 57 seconds (IQR=45-66) versus 80 seconds (IQR=58-106) for the computerized patients (P<.0001). The moulaged actors were felt to offer a more realistic encounter by 88% of the participants, with a higher associated stress level.
While potentially easier and more convenient to accomplish, computerized scenarios offered less fidelity than live moulaged actors for the purposes of MCI drilling. Medical students triaged live actors more accurately and more quickly than victims shown in a computerized simulation.
Email your librarian or administrator to recommend adding this to your organisation's collection.