We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We generalise Simpson’s nonabelian Hodge correspondence to the context of projective varieties with Kawamata log terminal (klt) singularities. The proof relies on a descent theorem for numerically flat vector bundles along birational morphisms. In its simplest form, this theorem asserts that given any klt variety
$X$
and any resolution of singularities, any vector bundle on the resolution that appears to come from
$X$
numerically, does indeed come from
$X$
. Furthermore, and of independent interest, a new restriction theorem for semistable Higgs sheaves defined on the smooth locus of a normal, projective variety is established.
Adhesion in multi-layer thin film structures was measured using the four-point bend technique. The investigation primarily focused on layers found in the backside metalization processes of Power MOSFETs (typically in a DMOSFET or U-MOSFET structure). Variation in metal layer and substrate condition produced changes in the adhesion behavior of the systems of interest. Pt, Cu, and Ti metals were applied to Si and SiO2 surfaces with various roughnesses in order to establish the relative contributions of surface chemistry and roughness variation. G values ranging from 2 – 100 J/m2 were measured and it was found that variation in surface chemistry has a larger impact than roughness on the adhesion strength of the systems investigated. The four-point bend adhesion test was determined to be adequate for the measurement of weak to intermediate adhesion of metals on Si wafers with RMS roughness values on the order of the metal film thickness.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.