We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Growing evidence suggests that direct oral anticoagulants (DOACs) may be suitable for cerebral venous thrombosis (CVT). The optimal strategy regarding lead-in parenteral anticoagulation (PA) prior to DOAC is unknown.
Methods:
In this post hoc analysis of the retrospective ACTION-CVT study, we compared patients treated with DOACs as part of routine care: those given “very early” DOAC (no PA), “early” (<5 days PA) and “delayed” (5–21 days PA). We compared baseline characteristics and outcomes between the very early/early and delayed groups. The primary outcome was a composite of day-30 CVT recurrence/extension, new peripheral venous thromboembolism, cerebral edema and intracranial hemorrhage.
Results:
Of 231 patients, 11.7% had very early DOAC, 64.5% early (median [IQR] 2 [1–2] days) and 23.8% delayed (5 [5–6] days). More patients had severe clinical/radiological presentations in the delayed group; more patients had isolated headaches in the very early/early group. Outcomes were better in the very early/early groups (90-day modified Rankin Scale of 0–2; 94.3% vs. 83.9%). Primary outcome events were rare and did not differ significantly between groups (2.4% vs. 2.1% delayed; adjusted HR 1.49 [95%CI 0.17–13.11]).
Conclusions:
In this cohort of patients receiving DOAC for CVT as part of routine care, >75% had <5 days of PA. Those with very early/early initiation of DOAC had less severe clinical presentations. Low event rates and baseline differences between groups preclude conclusions about safety or effectiveness. Further prospective data will inform care.
Few studies have been conducted in Vietnam on the epidemiology of healthcare-associated infections or antimicrobial use. Thus, we sought to determine the prevalence of and risk factors for surgical-site infections (SSIs) and to document antimicrobial use in surgical patients in a large healthcare facility in Vietnam.
Methods:
We conducted a point-prevalence survey of SSIs and antimicrobial use at Cho Ray Hospital, Ho Chi Minh City, a 1,250-bed inpatient facility. All patients on the 11 surgical wards and 2 intensive care units who had surgery within 30 days before the survey date were included.
Results:
Of 391 surgical patients, 56 (14.3%) had an SSI. When we compared patients with and without SSIs, factors associated with infection included trauma (relative risk [RR], 2.65; 95% confidence interval [CI95], 1.60 to 4.37; P < .001), emergency surgery (RR, 2.74; CI95, 1.65 to 4.55; P < .001), and dirty wounds (RR, 3.77; CI95, 2.39 to 5.96; P < .001). Overall, 198 (51%) of the patients received antimicrobials more than 8 hours before surgery and 390 (99.7%) received them after surgery. Commonly used antimicrobials included third-generation cephalosporins and aminoglycosides. Thirty isolates were identified from 26 SSI patient cultures; of the 25 isolates undergoing antimicrobial susceptibility testing, 22 (88%) were resistant to ceftriaxone and 24 (92%) to gentamicin.
Conclusions:
Our data show that (1) SSIs are prevalent at Cho Ray Hospital; (2) antimicrobial use among surgical patients is widespread and inconsistent with published guidelines; and (3) pathogens often are resistant to commonly used antimicrobials. SSI prevention interventions, including appropriate use of antimicrobials, are needed in this population.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.