We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
It is shown that for each computably enumerable set of n-element subsets of ω there is an infinite
set A ⊆ ω such that either all n-element subsets of A are in
or no n-element subsets of A are in
. An analogous result is obtained with the requirement that A be
replaced by the requirement that the jump of A be computable from 0(n). These results are best possible in various senses.
We study some generalized notions of cohesiveness which arise naturally in connection with effective versions of Ramsey's Theorem. An infinite set A of natural numbers is n-cohesive (respectively, n-r-cohesive) if A is almost homogeneous for every computably enumerable (respectively, computable) 2-coloring of the n-element sets of natural numbers. (Thus the 1-cohesive and 1-r-cohesive sets coincide with the cohesive and r-cohesive sets, respectively.) We consider the degrees of unsolvability and arithmetical definability levels of n-cohesive and n-r-cohesive sets. For example, we show that for all n ≥ 2, there exists a
n-cohesive set. We improve this result for n = 2 by showing that there is a
2-cohesive set. We show that the n-cohesive and n-r-cohesive degrees together form a linear, non-collapsing hierarchy of degrees for n ≥ 2. In addition, for n ≥ 2 we characterize the jumps of n-cohesive degrees as exactly the degrees ≥ 0(n+1) and also characterize the jumps of the n-r-cohesive degrees.
Ramsey's Theorem states that if P is a partition of [ω]k into finitely many partition classes, then there exists an infinite set of natural numbers which is homogeneous for P. We consider the degrees of unsolvability and arithmetical definability properties of infinite homogeneous sets for recursive partitions. We give Jockusch's proof of Seetapun's recent theorem that for all recursive partitions of [ω]2 into finitely many pieces, there exists an infinite homogeneous set A such that ∅′ ≰TA. Two technical extensions of this result are given, establishing arithmetical bounds for such a set A. Applications to reverse mathematics and introreducible sets are discussed.
Email your librarian or administrator to recommend adding this to your organisation's collection.