We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove that the class of reflexive asymptotic-$c_{0}$ Banach spaces is coarsely rigid, meaning that if a Banach space $X$ coarsely embeds into a reflexive asymptotic-$c_{0}$ space $Y$, then $X$ is also reflexive and asymptotic-$c_{0}$. In order to achieve this result, we provide a purely metric characterization of this class of Banach spaces. This metric characterization takes the form of a concentration inequality for Lipschitz maps on the Hamming graphs, which is rigid under coarse embeddings. Using an example of a quasi-reflexive asymptotic-$c_{0}$ space, we show that this concentration inequality is not equivalent to the non-equi-coarse embeddability of the Hamming graphs.
Let $X$ be an infinite-dimensional uniformly smooth Banach space. We prove that $X$ contains an infinite equilateral set. That is, there exist a constant $\lambda \gt 0$ and an infinite sequence $\mathop{({x}_{i} )}\nolimits_{i= 1}^{\infty } \subset X$ such that $\Vert {x}_{i} - {x}_{j} \Vert = \lambda $ for all $i\not = j$.
We consider the X-Greedy Algorithm and the Dual Greedy Algorithm in a finite-dimensional Banach space with a strictly monotone basis as the dictionary. We show that when the dictionary is an initial segment of the Haar basis in Lp[0, 1] (1 < p < ∞) then the algorithms terminate after finitely many iterations and that the number of iterations is bounded by a function of the length of the initial segment. We also prove a more general result for a class of strictly monotone bases.
We study some questions concerning the structure of the set of spreading models of a separable infinite-dimensional Banach space $X$. In particular we give an example of a reflexive $X$ so that all spreading models of $X$ contain ${{\ell }_{1}}$ but none of them is isomorphic to ${{\ell }_{1}}$. We also prove that for any countable set $C$ of spreading models generated by weakly null sequences there is a spreading model generated by a weakly null sequence which dominates each element of $C$. In certain cases this ensures that $X$ admits, for each $\alpha \,<\,{{\omega }_{1}}$, a spreading model ${{\left( \tilde{x}_{i}^{\left( \alpha \right)} \right)}_{i}}$ such that if $\alpha \,<\,\beta $ then ${{\left( \tilde{x}_{i}^{\left( \alpha \right)} \right)}_{i}}$ is dominated by (and not equivalent to) ${{\left( \tilde{x}_{i}^{\left( \beta \right)} \right)}_{i}}$. Some applications of these ideas are used to give sufficient conditions on a Banach space for the existence of a subspace and an operator defined on the subspace, which is not a compact perturbation of a multiple of the inclusion map.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.