We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we describe the system design and capabilities of the Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope at the conclusion of its construction project and commencement of science operations. ASKAP is one of the first radio telescopes to deploy phased array feed (PAF) technology on a large scale, giving it an instantaneous field of view that covers $31\,\textrm{deg}^{2}$ at $800\,\textrm{MHz}$. As a two-dimensional array of 36$\times$12 m antennas, with baselines ranging from 22 m to 6 km, ASKAP also has excellent snapshot imaging capability and 10 arcsec resolution. This, combined with 288 MHz of instantaneous bandwidth and a unique third axis of rotation on each antenna, gives ASKAP the capability to create high dynamic range images of large sky areas very quickly. It is an excellent telescope for surveys between 700 and $1800\,\textrm{MHz}$ and is expected to facilitate great advances in our understanding of galaxy formation, cosmology, and radio transients while opening new parameter space for discovery of the unknown.
The Rapid ASKAP Continuum Survey (RACS) is the first large-area survey to be conducted with the full 36-antenna Australian Square Kilometre Array Pathfinder (ASKAP) telescope. RACS will provide a shallow model of the ASKAP sky that will aid the calibration of future deep ASKAP surveys. RACS will cover the whole sky visible from the ASKAP site in Western Australia and will cover the full ASKAP band of 700–1800 MHz. The RACS images are generally deeper than the existing NRAO VLA Sky Survey and Sydney University Molonglo Sky Survey radio surveys and have better spatial resolution. All RACS survey products will be public, including radio images (with
$\sim$
15 arcsec resolution) and catalogues of about three million source components with spectral index and polarisation information. In this paper, we present a description of the RACS survey and the first data release of 903 images covering the sky south of declination
$+41^\circ$
made over a 288-MHz band centred at 887.5 MHz.
We describe here efforts to create and study magnetized electron–positron pair plasmas, the existence of which in astrophysical environments is well-established. Laboratory incarnations of such systems are becoming ever more possible due to novel approaches and techniques in plasma, beam and laser physics. Traditional magnetized plasmas studied to date, both in nature and in the laboratory, exhibit a host of different wave types, many of which are generically unstable and evolve into turbulence or violent instabilities. This complexity and the instability of these waves stem to a large degree from the difference in mass between the positively and the negatively charged species: the ions and the electrons. The mass symmetry of pair plasmas, on the other hand, results in unique behaviour, a topic that has been intensively studied theoretically and numerically for decades, but experimental studies are still in the early stages of development. A levitated dipole device is now under construction to study magnetized low-energy, short-Debye-length electron–positron plasmas; this experiment, as well as a stellarator device that is in the planning stage, will be fuelled by a reactor-based positron source and make use of state-of-the-art positron cooling and storage techniques. Relativistic pair plasmas with very different parameters will be created using pair production resulting from intense laser–matter interactions and will be confined in a high-field mirror configuration. We highlight the differences between and similarities among these approaches, and discuss the unique physics insights that can be gained by these studies.
In 2019, a 42-year-old African man who works as an Ebola virus disease (EVD) researcher traveled from the Democratic Republic of Congo (DRC), near an ongoing EVD epidemic, to Philadelphia and presented to the Hospital of the University of Pennsylvania Emergency Department with altered mental status, vomiting, diarrhea, and fever. He was classified as a “wet” person under investigation for EVD, and his arrival activated our hospital emergency management command center and bioresponse teams. He was found to be in septic shock with multisystem organ dysfunction, including circulatory dysfunction, encephalopathy, metabolic lactic acidosis, acute kidney injury, acute liver injury, and diffuse intravascular coagulation. Critical care was delivered within high-risk pathogen isolation in the ED and in our Special Treatment Unit until a diagnosis of severe cerebral malaria was confirmed and EVD was definitively excluded.
This report discusses our experience activating a longitudinal preparedness program designed for rare, resource-intensive events at hospitals physically remote from any active epidemic but serving a high-volume international air travel port-of-entry.
We tested if an adjunctive sleep health (SH) intervention improved smoking cessation treatment response by increasing quit rates. We also examined if baseline sleep, and improvements in sleep in the first weeks of quitting, were associated with quitting at the end of treatment.
Methods
Treatment-seeking smokers (N = 29) aged 21–65 years were randomized to a SH intervention (n = 16), or general health (GH) control (n = 13) condition. Participants received six counseling sessions across 15-weeks: SH received smoking cessation + SH counseling; GH received smoking cessation + GH counseling. Counseling began 4-weeks before the target quit date (TQD), and varenicline treatment began 1-week prior to TQD. Smoking status and SH were assessed at baseline (week 1), TQD (week 4), 3 weeks after cessation (week 7), week 12, and at the end of treatment (EOT; week 15).
Results
SH versus GH participants had higher Carbon Monoxide (CO) -verified, 7-day point prevalence abstinence at EOT (69% vs. 54%, respectively; adjusted odds ratio (aOR) = 2.10, 95% confidence interval (CI) = 0.40–10.69, P = 0.77). Higher baseline sleep efficiency (aOR = 1.42, 95% CI = 1.03–1.96, P = 0.03), predicted higher EOT cessation. Models were adjusted for age, sex, education, and baseline nicotine dependence.
Conclusions
Improving SH in treatment-seeking smokers prior to cessation warrants further examination as a viable strategy to promote cessation.
Prevention of Clostridioides difficile infection (CDI) is a national priority and may be facilitated by deployment of the Targeted Assessment for Prevention (TAP) Strategy, a quality improvement framework providing a focused approach to infection prevention. This article describes the process and outcomes of TAP Strategy implementation for CDI prevention in a healthcare system.
Methods:
Hospital A was identified based on CDI surveillance data indicating an excess burden of infections above the national goal; hospitals B and C participated as part of systemwide deployment. TAP facility assessments were administered to staff to identify infection control gaps and inform CDI prevention interventions. Retrospective analysis was performed using negative-binomial, interrupted time series (ITS) regression to assess overall effect of targeted CDI prevention efforts. Analysis included hospital-onset, laboratory-identified C. difficile event data for 18 months before and after implementation of the TAP facility assessments.
Results:
The systemwide monthly CDI rate significantly decreased at the intervention (β2, −44%; P = .017), and the postintervention CDI rate trend showed a sustained decrease (β1 + β3; −12% per month; P = .008). At an individual hospital level, the CDI rate trend significantly decreased in the postintervention period at hospital A only (β1 + β3, −26% per month; P = .003).
Conclusions:
This project demonstrates TAP Strategy implementation in a healthcare system, yielding significant decrease in the laboratory-identified C. difficile rate trend in the postintervention period at the system level and in hospital A. This project highlights the potential benefit of directing prevention efforts to facilities with the highest burden of excess infections to more efficiently reduce CDI rates.
Weed control in corn traditionally has relied on atrazine as a foundational tool to control problematic weeds. However, the recent discovery of atrazine in aquifers and other water sources increases the likelihood of more strict restrictions on its use. Field-based research trials to find atrazine alternatives were conducted in 2017 and 2018 in Fayetteville, AR, by testing the tolerance of corn to PRE and POST applications of different photosystem II (PSII) inhibitors alone or in combination with mesotrione or S-metolachlor. All experiments were designed as a two-factor factorial, randomized complete block, with the two factors being (1) PSII-inhibiting herbicide and (2) the herbicide added to create the mixture. The PSII-inhibiting herbicides were prometryn, ametryn, simazine, fluometuron, metribuzin, linuron, diuron, atrazine, and propazine. The second factor consisted of either no additional herbicide, S-metolachlor, or mesotrione. Treatments were applied immediately after planting in the PRE experiments and to 30-cm–tall corn for the POST experiments. For the PRE study, low levels of injury (<15%) were observed at 14 and 28 d after application and corn height was negatively affected by the PSII-inhibiting herbicide applied. PRE-applied fluometuron- and ametryn-containing treatments consistently caused injury to corn, often exceeding 5%. Because of low injury levels caused by all treatments, crop density and yield did not differ from that of the nontreated plants. For the POST study, crop injury, relative height, and relative yield were affected by PSII-inhibiting herbicide and the herbicide added. Ametryn-, diuron-, linuron-, propazine-, and prometryn-containing treatments caused at least 25% injury to corn in at least 1 site-year. All PSII-inhibiting herbicides, except metribuzin and simazine when applied alone, caused yield loss in corn when compared with atrazine alone. Diuron-, linuron-, metribuzin-, and simazine-containing treatments applied PRE and metribuzin- and simazine-containing treatments applied POST should be investigated further as atrazine replacements.
The Neotoma Paleoecology Database is a community-curated data resource that supports interdisciplinary global change research by enabling broad-scale studies of taxon and community diversity, distributions, and dynamics during the large environmental changes of the past. By consolidating many kinds of data into a common repository, Neotoma lowers costs of paleodata management, makes paleoecological data openly available, and offers a high-quality, curated resource. Neotoma’s distributed scientific governance model is flexible and scalable, with many open pathways for participation by new members, data contributors, stewards, and research communities. The Neotoma data model supports, or can be extended to support, any kind of paleoecological or paleoenvironmental data from sedimentary archives. Data additions to Neotoma are growing and now include >3.8 million observations, >17,000 datasets, and >9200 sites. Dataset types currently include fossil pollen, vertebrates, diatoms, ostracodes, macroinvertebrates, plant macrofossils, insects, testate amoebae, geochronological data, and the recently added organic biomarkers, stable isotopes, and specimen-level data. Multiple avenues exist to obtain Neotoma data, including the Explorer map-based interface, an application programming interface, the neotoma R package, and digital object identifiers. As the volume and variety of scientific data grow, community-curated data resources such as Neotoma have become foundational infrastructure for big data science.
We present results from a multiwavelength study of the blazar PKS 1954–388 at radio, UV, X-ray, and gamma-ray energies. A RadioAstron observation at 1.66 GHz in June 2012 resulted in the detection of interferometric fringes on baselines of 6.2 Earth-diameters. This suggests a source frame brightness temperature of greater than 2 × 1012 K, well in excess of both equipartition and inverse Compton limits and implying the existence of Doppler boosting in the core. An 8.4-GHz TANAMI VLBI image, made less than a month after the RadioAstron observations, is consistent with a previously reported superluminal motion for a jet component. Flux density monitoring with the Australia Telescope Compact Array confirms previous evidence for long-term variability that increases with observing frequency. A search for more rapid variability revealed no evidence for significant day-scale flux density variation. The ATCA light-curve reveals a strong radio flare beginning in late 2013, which peaks higher, and earlier, at higher frequencies. Comparison with the Fermi gamma-ray light-curve indicates this followed ~ 9 months after the start of a prolonged gamma-ray high-state—a radio lag comparable to that seen in other blazars. The multiwavelength data are combined to derive a Spectral Energy Distribution, which is fitted by a one-zone synchrotron-self-Compton (SSC) model with the addition of external Compton (EC) emission.
Geophysical granular flows, such as avalanches, debris flows, lahars and pyroclastic flows, are always strongly influenced by the basal topography that they flow over. In particular, localised bumps or obstacles can generate rapid changes in the flow thickness and velocity, or shock waves, which dissipate significant amounts of energy. Understanding how a granular material is affected by the underlying topography is therefore crucial for hazard mitigation purposes, for example to improve the design of deflecting or catching dams for snow avalanches. Moreover, the interactions with solid boundaries can also have important applications in industrial processes. In this paper, small-scale experiments are performed to investigate the flow of a granular avalanche over a two-dimensional smooth symmetrical bump. The experiments show that, depending on the initial conditions, two different steady-state regimes can be observed: either the formation of a detached jet downstream of the bump, or a shock upstream of it. The transition between the two cases can be controlled by adding varying amounts of erodible particles in front of the obstacle. A depth-averaged terrain-following avalanche theory that is formulated in curvilinear coordinates is used to model the system. The results show good agreement with the experiments for both regimes. For the case of a shock, time-dependent numerical simulations of the full system show the evolution to the equilibrium state, as well as the deposition of particles upstream of the bump when the inflow ceases. The terrain-following theory is compared to a standard depth-averaged avalanche model in an aligned Cartesian coordinate system. For this very sensitive problem, it is shown that the steady-shock regime is captured significantly better by the terrain-following avalanche model, and that the standard theory is unable to predict the take-off point of the jet. To retain the practical simplicity of using Cartesian coordinates, but have the improved predictive power of the terrain-following model, a coordinate mapping is used to transform the terrain-following equations from curvilinear to Cartesian coordinates. The terrain-following model, in Cartesian coordinates, makes identical predictions to the original curvilinear formulation, but is much simpler to implement.
The glycaemic and insulin indices assess postprandial glycaemic and insulin response to foods, respectively, which may not reflect the long-term effects of diet on insulin response. We developed and evaluated the validity of four empirical indices to assess the insulinaemic potential of usual diets and lifestyles, using dietary, lifestyle and biomarker data from the Nurses’ Health Study (NHS, n 5812 for hyperinsulinaemia, n 3929 for insulin resistance). The four indices were as follows: the empirical dietary index for hyperinsulinaemia (EDIH) and the empirical lifestyle index for hyperinsulinaemia (ELIH); the empirical dietary index for insulin resistance (EDIR) and the empirical lifestyle index for insulin resistance (ELIR). We entered thirty-nine FFQ-derived food groups in stepwise linear regression models, and defined indices as patterns most predictive of fasting plasma C-peptide, for the hyperinsulinaemia pathway (EDIH and ELIH), and of theTAG:HDL-cholesterol ratio, for the insulin-resistance pathway (EDIR and ELIR). We evaluated the validity of indices in two independent samples from NHS-II and Health Professionals Follow-up Study (HPFS) using multivariable-adjusted linear regression analyses to calculate relative concentrations of biomarkers. The EDIH is comprised of eighteen food groups; thirteen were positively associated with C-peptide and five were inversely associated. The EDIR is comprised of eighteen food groups; ten were positively associated with TAG:HDL-cholesterol and eight were inversely associated. Lifestyle indices had fewer dietary components, and included BMI and physical activity as components. In the validation samples, all indices significantly predicted biomarker concentrations – for example, the relative concentrations of the corresponding biomarkers comparing extreme index quintiles in the HPFS were EDIH, 1·29 (95 % CI 1·22, 1·37); ELIH, 1·78 (95 % CI 1·68, 1·88); EDIR, 1·44 (95 % CI 1·34, 1·55); and ELIR, 2·03 (95 % CI 1·89, 2·19); all Ptrend<0·0001. The robust associations of these novel hypothesis-driven indices with insulin response biomarker concentrations suggest their usefulness in assessing the ability of whole diets and lifestyles to stimulate and/or sustain insulin secretion.
To determine the typical microbial bioburden (overall bacterial and multidrug-resistant organisms [MDROs]) on high-touch healthcare environmental surfaces after routine or terminal cleaning.
DESIGN
Prospective 2.5-year microbiological survey of large surface areas (>1,000 cm2).
SETTING
MDRO contact-precaution rooms from 9 acute-care hospitals and 2 long-term care facilities in 4 states.
PARTICIPANTS
Samples from 166 rooms (113 routine cleaned and 53 terminal cleaned rooms).
METHODS
Using a standard sponge-wipe sampling protocol, 2 composite samples were collected from each room; a third sample was collected from each Clostridium difficile room. Composite 1 included the TV remote, telephone, call button, and bed rails. Composite 2 included the room door handle, IV pole, and overbed table. Composite 3 included toileting surfaces. Total bacteria and MDROs (ie, methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci [VRE], Acinetobacter baumannii, Klebsiella pneumoniae, and C. difficile) were quantified, confirmed, and tested for drug resistance.
RESULTS
The mean microbial bioburden and range from routine cleaned room composites were higher (2,700 colony-forming units [CFU]/100 cm2; ≤1–130,000 CFU/100 cm2) than from terminal cleaned room composites (353 CFU/100 cm2; ≤1–4,300 CFU/100 cm2). MDROs were recovered from 34% of routine cleaned room composites (range ≤1–13,000 CFU/100 cm2) and 17% of terminal cleaned room composites (≤1–524 CFU/100 cm2). MDROs were recovered from 40% of rooms; VRE was the most common (19%).
CONCLUSIONS
This multicenter bioburden summary provides a first step to determining microbial bioburden on healthcare surfaces, which may help provide a basis for developing standards to evaluate cleaning and disinfection as well as a framework for studies using an evidentiary hierarchy for environmental infection control.
We describe the performance of the Boolardy Engineering Test Array, the prototype for the Australian Square Kilometre Array Pathfinder telescope. Boolardy Engineering Test Array is the first aperture synthesis radio telescope to use phased array feed technology, giving it the ability to electronically form up to nine dual-polarisation beams. We report the methods developed for forming and measuring the beams, and the adaptations that have been made to the traditional calibration and imaging procedures in order to allow BETA to function as a multi-beam aperture synthesis telescope. We describe the commissioning of the instrument and present details of Boolardy Engineering Test Array’s performance: sensitivity, beam characteristics, polarimetric properties, and image quality. We summarise the astronomical science that it has produced and draw lessons from operating Boolardy Engineering Test Array that will be relevant to the commissioning and operation of the final Australian Square Kilometre Array Path telescope.
The herbicide fluridone is a soil-residual herbicide that should provide effective control of several problematic agronomic weeds, but because of herbicide persistence, injury to rotational crops is possible. In this experiment, multiple rates of fluridone were applied PRE to cotton at four irrigated locations across Arkansas to determine the risk of fluridone persisting and injuring subsequently planted wheat, corn, soybean, rice, grain sorghum, and sunflower. The multiple rates of fluridone were compared with fluometuron and evaluated for percentage of crop injury, crop density, and potential yield loss for each crop at the end of the subsequent growing season. Regardless of the location, wheat exhibited the greatest injury with 13 to 26% at Fayetteville (silt loam), 8 to 15% at Pine Tree (silt loam), 2 to 7% at Keiser (silty clay), and 3 to 8% at Rohwer (silty clay). Along with high levels of injury to wheat, fluridone at 900 g ai ha−1 caused loss of wheat stands to 29 plants m−1 row compared with fluometuron, which had stands of 49 plants m−1 row. Although injury occurred in wheat at all locations, no rate of fluridone reduced wheat yields compared with fluometuron. Injury to grain sorghum ranged from 5 to 10% from all rates of fluridone at Pine Tree. Fluridone at 900 g ha−1 (11 plants m−1 row) also reduced grain sorghum stands at Pine Tree over that of fluometuron (19 plants m−1 row). A decrease in grain sorghum yield was also observed from fluridone at 448, 673, and 900 g ha−1 compared with fluometuron at Pine Tree. At Keiser, rice exhibited significant levels of injury (1 to 13%) from fluridone 393 d after treatment. In conclusion, injury to a wheat rotational crop is more likely following an application of fluridone in cotton than is injury to other rotational crops, but yield reductions are not expected for most rotational crops when fluridone is applied to cotton at an anticipated labeled rate of 224 g ha−1.
A search has been made using the Buckland Park air shower array for evidence of any excess of events from the direction of the recent supernova in the Large Magellanic Cloud. Upper limits resulting from this search and their significance are discussed in this paper.
The subsurface exploration of other planetary bodies can be used to unravel their geological history and assess their habitability. On Mars in particular, present-day habitable conditions may be restricted to the subsurface. Using a deep subsurface mine, we carried out a program of extraterrestrial analog research – MINe Analog Research (MINAR). MINAR aims to carry out the scientific study of the deep subsurface and test instrumentation designed for planetary surface exploration by investigating deep subsurface geology, whilst establishing the potential this technology has to be transferred into the mining industry. An integrated multi-instrument suite was used to investigate samples of representative evaporite minerals from a subsurface Permian evaporite sequence, in particular to assess mineral and elemental variations which provide small-scale regions of enhanced habitability. The instruments used were the Panoramic Camera emulator, Close-Up Imager, Raman spectrometer, Small Planetary Linear Impulse Tool, Ultrasonic drill and handheld X-ray diffraction (XRD). We present science results from the analog research and show that these instruments can be used to investigate in situ the geological context and mineralogical variations of a deep subsurface environment, and thus habitability, from millimetre to metre scales. We also show that these instruments are complementary. For example, the identification of primary evaporite minerals such as NaCl and KCl, which are difficult to detect by portable Raman spectrometers, can be accomplished with XRD. By contrast, Raman is highly effective at locating and detecting mineral inclusions in primary evaporite minerals. MINAR demonstrates the effective use of a deep subsurface environment for planetary instrument development, understanding the habitability of extreme deep subsurface environments on Earth and other planetary bodies, and advancing the use of space technology in economic mining.
The aim of this study was to examine cross-sectionally whether higher cardiorespiratory fitness (CRF) might favorably modify amyloid-β (Aβ)-related decrements in cognition in a cohort of late-middle-aged adults at risk for Alzheimer’s disease (AD). Sixty-nine enrollees in the Wisconsin Registry for Alzheimer’s Prevention participated in this study. They completed a comprehensive neuropsychological exam, underwent 11C Pittsburgh Compound B (PiB)-PET imaging, and performed a graded treadmill exercise test to volitional exhaustion. Peak oxygen consumption (VO2peak) during the exercise test was used as the index of CRF. Forty-five participants also underwent lumbar puncture for collection of cerebrospinal fluid (CSF) samples, from which Aβ42 was immunoassayed. Covariate-adjusted regression analyses were used to test whether the association between Aβ and cognition was modified by CRF. There were significant VO2peak*PiB-PET interactions for Immediate Memory (p=.041) and Verbal Learning & Memory (p=.025). There were also significant VO2peak*CSF Aβ42 interactions for Immediate Memory (p<.001) and Verbal Learning & Memory (p<.001). Specifically, in the context of high Aβ burden, that is, increased PiB-PET binding or reduced CSF Aβ42, individuals with higher CRF exhibited significantly better cognition compared with individuals with lower CRF. In a late-middle-aged, at-risk cohort, higher CRF is associated with a diminution of Aβ-related effects on cognition. These findings suggest that exercise might play an important role in the prevention of AD. (JINS, 2015, 21, 841–850)