We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Recent epidemiological data suggest a link between the consumption of bovine offal products and Shiga toxin-producing Escherichia coli (STEC) infection in Japan. This study thus examined the prevalence of STEC in various types of these foods. PCR screened 229 bovine offal products for the presence of Shiga toxin (stx) gene. Thirty-eight (16·6%) samples were stx positive, of which eight were positive for rfbEO157 and three were positive for wzyO26. Four O157 and one O26 STEC isolates were finally obtained from small-intestine and omasum products. Notably, homogenates of bovine intestinal products significantly reduced the extent of growth of O157 in the enrichment process compared to homogenates of beef carcass. As co-incubation of O157 with background microbiota complex from bovine intestinal products in buffered peptone water, in the absence of meat samples, tended to reduce the extent of growth of O157, we reasoned that certain microbiota present in offal products played a role. In support of this, inoculation of generic E. coli from bovine intestinal products into the homogenates significantly reduced the extent of growth of O157 in the homogenates of bovine intestinal and loin-beef products, and this effect was markedly increased when these homogenates were heat-treated prior to inoculation. Together, this report provides first evidence of the prevalence of STEC in a variety of bovine offal products in Japan. The prevalence data herein may be useful for risk assessment of those products as a potential source of human STEC infection beyond the epidemiological background. The growth characteristic of STEC O157 in offal products also indicates the importance of being aware when to test these food products.
We synthesized amorphous semiconductor films composed of Mo-encapsulating Si clusters (MoSin : n∼10) on solid substrates. The MoSi10 films had Si networks similar to hydrogenated amorphous Si and an optical gap of 1.5 eV. Electron spin resonance signals were not observed in the films indicating that dangling bonds of Si were terminated by Mo atoms. We fabricated thin-film-transistors using the MoSi10 film as a channel material. The electric field effect of the film was clearly observed. This suggests that the density of mid-gap states in the film is low enough for the field effect to occur.
Metal abundances of the hot X-ray emitting interstellar medium (ISM) include important information to understand the history of star formation and evolution of galaxies. The metals are mainly synthesized by Type Ia (SNe Ia) and stellar mass loss in elliptical galaxies. The productions of stellar mass loss reflect stellar metallicity. SNe Ia mainly product Fe. Therefore, the abundance pattern of ISM can play key role to investigate the metal enrichment history.
The metal abundances in the hot X-ray emitting interstellar medium (ISM) of early-type galaxies give us important information about the present metal supply into the ISM through supernovae (SNe) Ia and stellar mass loss. In addition, O and Mg abundances should reflect the stellar metallicity and enable us to directly look into the formation history of these galaxies. The XIS instrument onboard the Suzaku satellite has an improved line spread function due to a very small low-pulse-height tail below 1 keV coupled with a very low background.
We report our recent progress on extragalactic spectroscopic and continuum observations,
including HCN(J=1–0), HCO+(J=1–0), and CN(N=1–0) imaging surveys
of local Seyfert and starburst galaxies
using the Nobeyama Millimeter Array,
high-J CO observations (J=3–2 observations
using the Atacama Submillimeter Telescope Experiment (ASTE)
and J=2–1 observations with the Submillimeter Array) of galaxies,
and λ 1.1 mm continuum observations of high-z violent starburst galaxies
using the bolometer camera AzTEC mounted on ASTE.
We present the high-resolution 12CO(J = 1 − 0), 13CO(J = 1 − 0) and 12CO(J = 3 − 2) maps toward a GMA located on the southern arm region of M31 using Nobeyama 45 m and ASTE 10 m telescopes. The GMA consists of two velocity-components, i.e., red and blue. The blue component shows a strong and narrow peak, whereas the red one shows a weak and broad profile. The red component has a lower 12CO(J = 1 − 0)/13CO(J = 1 − 0) ratio (~ 5) than that of the blue one (~ 16), indicating that the red component is denser than the blue one. The red component could be the decelerated gas if we consider the galactic rotational velocity in this region. We suggest that the red component is “post shock” dense gas decelerated due to a spiral density wave. This could be observational evidence of dense molecular gas formation due to galactic shock by spiral density waves.
We also present results from on-going observations toward NGC 604, which is the supergiant HII region of M33, using Nobeyama 45 m and ASTE 10 m telescopes. The ratio of 12CO(J = 3 − 2) to 12CO(J = 1 − 0) ranges from 0.3 to 1.2 in NGC 604. The 12CO(J = 1 − 0) map shows the clumpy structure while 12CO(J = 3 − 2) shows a strong peak near to the central star cluster of NGC 604. The high ratio gas is distributed on the arc-like or shell-like structure along with Hα emission and HII region detected by radio continuum. These suggest that the dense gas formation and second generation star formation occur in the surrounding gas compressed by the stellar wind and/or supernova in central star cluster.
We present experimental results of colony formation in bacteria as an example of pattern formation resulting from reproduction and movement in biological populations. The bacterium Bacillus subtilis is known to exhibit at least five distinct types of colony pattern, depending on the substrate softness and nutrient concentration: diffusion-limited aggregation (DLA), compact Eden-like, dense branching morphology (DBM), concentric ring-like, and disk. We established a morphological diagram of the colony patterns, and then examined and characterized both macroscopically and microscopically how the the colonies grow. There seem to be two kinds of bacterial cells – active and inactive – and the active form drives the colony interfaces outwards. The active cells may be clearly distinguished from the inactive ones as they form the characteristic fingernail-like structure at the tips of growing branches of the DBM colony. The concentric ring-like colony is formed as a consequence of repeated alternate migration and resting of the growing interface, the cycle time for which seems to be independent of the substrate softness and nutrient concentration. So far there have been several phenomenological models proposed to qualitatively explain or reproduce the patterns observed in bacterial colonies. A few of them are reviewed here, systematically and critically, in light of our experimental results.
In case-control studies of complex disease genes, allele frequencies or allele positivities at candidate
loci or markers are compared between cases and controls. Although 2 × 2 contingency tables based
on allele frequency and allele positivity are generally used to perform simple statistical tests (e.g. a
comparison of two proportions and a χ2 test), little is known about the difference in power between
the two tables. In this study, we investigated the number of subjects required to obtain a power of
1 − β with a significance level of α for the allele frequency and allele positivity tables. A large
difference in the required number of subjects was found between the two tables. Allele positivity
tables were suitable for the detection of susceptibility alleles showing a dominant mode of inheritance
(MOI). On the other hand, allele frequency tables were suitable for the identification of susceptibility
alleles showing a recessive MOI or a multiplicative MOI. In the case of an additive MOI, a suitable
table was determined by combining the frequency of the susceptibility allele and the penetrance.
These results imply that there are cases in which true association is detected based on one
contingency table and is not detected based on another. A simulation analysis revealed that the type
I error rate was not much inflated under the null hypothesis of no association, even when a statistical
test was performed twice using both allele frequency and allele positivity tables. In contrast, under
the alternative hypothesis, the loss of power was marked when a test was performed once using an
unsuitable table. In conclusion, statistical tests should be performed using both tables, without
adjustment of multiplicity, in case-control studies of complex disease genes when the study objective
is exploratory.
An icosahedral phase was found to be formed as a primary precipitation phase in the crystallization process of binary Zr70Pd30, ternary Zr70Ni30−xPdx, and Zr70Cu30−xPdx (x = 10 and 20 at.%) and quaternary Zr70Ni10Cu10Pd10 amorphous alloys. The maximum volume fraction of the icosahedral phase was nearly 100% for the 20% Pd alloys and the grain size tended to decrease in the range from 40 to 70 nm with increasing Pd content. No icosahedral phase was formed in the Zr–Ni–Cu alloys without Pd, and hence, the addition of Pd was concluded to be essential for the formation of the icosahedral phase in the Zr-based amorphous alloys. It also was noticed that the icosahedral phase was formed even in the binary Zr70Pd30 amorphous alloy. The icosahedral phase was in a metastable state and changes to equilibrium crystalline phases by annealing in the higher temperature range. The finding of the formation of the icosahedral phase in the binary alloy system allowed us to predict the future appearance of a number of icosahedral base alloys in other alloy systems.
Hydroxyapetite (HA) coating on medical implant has been used in commercial application for several decades. The coating, commercially made by thermal spray method, functions as a intermediate layer between human tissues and the metal implant. The coating can speed up early stage healing after operation but the life span is much limited by low interfacial bond strength, which comes from the dissolution of amorphous HA in human body fluid during its service. This amorphous phase is formed in coating process under high temperature. To overcome these problems, we have developed a novel room temperature electrophoretic deposition process to fabricate nanostructured HA coating. This nanostructured HA coating significantly improved coating's bond strength up to 50-60 MPa, 2-3 times better than the thermal sprayed HA coating. The nanostructured HA coating also has corrosion resistance 50-100 times higher than the conventional HA coating. X-ray diffraction shows that all the HA coating is fully crystalline phase. It is expected that the implants with the nanostructured HA coating will have much longer service life. Other benefits derived from this process include room temperature deposition, the ability to control the coating microstructure and phases, and low cost for production.
In an effort to explore new highly resistive soft magnetic materials, Fe/SiO2 nanocomposite materials have been synthesized using a wet chemical reaction approach in which the precursor complex was annealed at various temperatures. The crystallographic structure, nanostructure, morphology, and magnetic properties of the synthetic Fe/SiO2 particles were studied by x-ray diffraction, transmission electron microscopy, and magnetic measurements. The experimental results show that for this approach, the [.alpha]-Fe particles are coated with amorphous silica. The progress of the reaction, the purity of Fe/SiO2 in the synthetic powder, and the Fe particle size are highly dependent on the annealing temperature. By adjusting the annealing temperature, the particle size can be controlled from approximately 20 nm to 70 nm. For the synthetic nanopowder obtained by H2 reduction at 400 °C, there exists a superparamagnetic behavior below room temperature; while for the nanopowders obtained by reduction at higher temperatures, the ferromagnetic behavior is dominant. Based on these studies, optimum synthesis conditions for Fe/SiO2 nanocomposites is determined.
SAXS and EXAFS were applied to study genesis of polynuclear zirconium hydroxyspecies in pillaring solutions as dependent upon the zirconium concentration, addition of alkaline-earth chlorides and aging. After the montmorillonite clay pillaring, the structure of zirconium nanopillars was characterized by applying X-ray structural analysis, UV-Vis, FTIRS of adsorbed CO and nitrogen adsorption isotherms. Main pillaring species appear to be nanorods comprised of several Zr4 tetramers. Basic structural features of the tetramers are preserved in zirconia nanoparticles fixed between alumosilicate layers in pillared clays. In calcined samples, those nanoparticles contain only bridging hydroxyls and/or oxygen anions responsible for bonding within pillars and between pillars and clay sheets.
A combination of XRD and TEM techniques have been used to characterize the response of room temperature magnetron sputtered Fe-Pd thin films on Si-susbtrates to post-deposition order-annealing at temperatures between 400-500°C. Deposition produced the disordered Fe-Pd phase with (111)-twinned grains approximately 18nm in size. Ordering occurred for annealing at 450°C and 500°C after 1.8ks, accompanied by grain growth (40-70nm). The ordered FePd grains contained (111)-twins rather than {101}-twins typical of bulk ordered FePd. The metallic overlayers and underlayers selected here produced detrimental dissolution (Pt into Fe-Pd phases) and precipitation reactions between Pd and the Si substrate.
In this paper, we demonstrate a “Plug and Play” approach, whereby externally synthesized nanoparticles of desired functions and size are incorporated into the semiconductor, followed by the manipulation of surface chemical bonds in order to achieve multiple functionality. Sonochemically synthesised Fe2O3 nanoparticles were introduced onto device quality Si wafers. On annealing the particle-treated Si wafer in ultra high vacuum, oxygen changes the bonding partner from Fe to Si and desorb as SiO at ∼ 760°C, leading to the formation of uniform sized Fe nanoparticles ( size ∼6-8 nm) on the surface and the sample shows ferromagnetic behaviour. More importantly, the particle treated Si exhibits light emission at wavelengths 1.57, 1.61 and 1.65 microns (full width at half maximum ∼ 20 meV). Emission in this wavelength range is crucial for optical communications and is highly desired from a Si based material. Further, oxidation of this material leads to the formation of a selective capping layer of SiO2. Thus, by manipulating the surface chemical bonds, we are able to introduce optical, magnetic, metallic and insulating functions to Si. Additionally, the particles exhibit self-assembly on a patterned Si surface. We believe that this approach is universal and the material developed here is compatible with the planar Si technology, bringing us closer to realization of Si based monolithic electronics.
Highly reflective surface-metallized flexible polyimide films have been prepared by the incorporation of the soluble silver ion complex (1,1,1-trifluoroacetylacetonato)silver(I) into dimethylacetamide solutions of the poly(amic acid) prepared from 2,2-bis(3,4-dicarboxyphenyl)-hexafluoropropane dianhydride (6FDA) and 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoro-propane (4-BDAF). Thermal curing of solution cast silver(I)-poly(amic acid) films leads to cycloimidization of the amic acid with concommitant silver(I) reduction and formation of a reflective surface-silvered film at 8 and 13 weight percent silver. The metallized films are thermally stable and flexible with mechanical properties similar to those of the parent polyimide. TEM reveals that the bulk (interior) of the polyimide composite films have 5-20 nanometer-sized silver particles with a surface layer of silver metal ca. 80 nm thick. Neither the bulk nor the surface of the films is electrically conductive. Adhesion of the surface metal to polyimide is excellent.