We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Activity of brown and beige adipocytes could contribute to breed differences in fat deposition. Therefore, we compared the abundance of markers for adipocyte types in steers from three cattle breeds differing in fat deposition (Japanese Black, Holstein, Charolais). Markers for white (leptin (LEP)), beige (transmembrane protein 26 (TMEM26), uncoupling protein 1 (UCP1)), and brown adipocytes (Zic family member 1 (ZIC1), UCP1) were analysed by quantitative reverse transcription PCR in subcutaneous fat (SCF), intramuscular fat (IMF), intermuscular fat (IRMF), perirenal fat (PF) and visceral fat (VF). LEP messenger RNA (mRNA) was less abundant in VF compared with other depots (P<0.05). TMEM26 was weakly but evenly expressed in all depots in all animals, whereas UCP1 mRNA showed higher individual variation in some depots. ZIC1 was not detectable in VF and PF but abundant in SCF, IMF and even more abundant in IRMF (P<0.05). No significant breed differences were detected. Using antibodies against UCP1, TMEM26 and ZIC1, we demonstrated that fat depots of 26-month-old cattle still comprise different adipocyte types. However, our results did not support the hypothesis that higher energy expenditure associated with higher abundance or activity of beige or brown adipocytes contributed to differences in fat deposition.
To verify the effectiveness and safety of the addition of adipose-derived regenerative cells to autologous fat injection therapy.
Methods:
Unilateral vocal fold paralysis models were made by cutting the right recurrent laryngeal nerve in two pigs. At day 30, 0.5 ml adipose-derived regenerative cells mixed with 1 ml autologous fat was injected into the right vocal fold of one pig, with the other receiving 0.5 ml Ringer's solution mixed with 1 ml autologous fat. At day 120, fibrescopy, laser Doppler flowmeter, computed tomography, vocal function evaluation and histological assessment were conducted.
Results:
Although histological assessment revealed atrophy of the thyroarytenoid muscle fibre in both pigs, there was remarkable hypertrophy of the thyroarytenoid muscle fibre in the area surrounding the adipose-derived regenerative cells injection site.
Conclusion:
The addition of a high concentration of adipose-derived regenerative cells to autologous fat injection therapy has the potential to improve the treatment outcome for unilateral vocal fold paralysis.
The aim of this study was to estimate genetic correlations between milk yield, somatic cell score (SCS), mastitis, and claw and leg disorders (CLDs) during first lactation in Holstein cows by using a threshold–linear random regression test-day model. We used daily records of milk, fat and protein yields; somatic cell count (SCC); and mastitis and CLD incidences from 46 771 first-lactation Holstein cows in Hokkaido, Japan, that calved between 2000 and 2009. A threshold animal model for binary records (mastitis and CLDs) and linear animal model for yield traits were applied in our multiple trait analysis. For both liabilities and yield traits, additive genetic effects were used as random regression on cubic Legendre polynomials of days on milk. The highest positive genetic correlations between yields and disease incidences (0.36 for milk and mastitis, 0.56 for fat and mastitis, 0.24 for protein and mastitis, 0.32 for milk and CLD, 0.44 for fat and CLD and 0.31 for protein and CLD) were estimated at about the time of peak milk yield (36 to 65 days in milk). Selection focused on early lactation yield may therefore increase the risk of mastitis and CLDs. The positive genetic correlations of SCS with mastitis or CLD incidence imply that selection to reduce SCS in the early stages of lactation would decrease the incidence of both mastitis and CLD.
To increase X-ray photon number generated by laser-cluster interaction, it is important to understand the dependence of X-ray generation on cluster size. We carried out Xe K-shell X-ray generation using a conical nozzle with Xe clusters, the radius of which was controllable by adjusting the backing pressure. The experiment clarifies the result that the Xe K-shell X-ray photon number increases with increasing cluster radius from 8 to 12 nm, and saturates at the radius between 12 and 17 nm. We also investigated the Xe K-shell X-ray photon number dependence on laser intensity, and found that the threshold laser intensity of the Xe K-shell X-ray generation exists between 2 × 1017 and 5 × 1018 W/cm2.
Using a newly developed rapid test, an outbreak of human metapneumovirus (HMPV) infection in a long-term care facility was detected within only 2 days after the onset of symptoms in a putative index case. The outbreak was almost under control within 8 days mainly by zoning patients, with the exception of two cases of HMPV that were diagnosed 16 and 17 days after the onset of the outbreak. According to an immunological diagnosis as well as the rapid test, it was eventually proven that 18 patients had HMPV infections. We suspected that even asymptomatic residents, who had not been completely separated from the facility population, were a source of infection. That suggested that all asymptomatic residents should be tested and that the separation of the infected patients should be absolute, if an outbreak of HMPV infection is suspected in such a facility.
We investigated the relationships between conception rates (CRs) at first service in Japanese Holstein heifers (i.e. animals that had not yet had their first calf) and cows and their test-day (TD) milk yields. Data included records of artificial insemination (AI) for heifers and cows that had calved for the first time between 2000 and 2008 and their TD milk yields at 6 through 305 days in milk (DIM) from first through third lactations. CR was defined as a binary trait for which first AI was a failure or success. A threshold-linear animal model was applied to estimate genetic correlations between CRs of heifers or cows and TD milk yield at various lactation stages. Two-trait genetic analyses were performed for every combination of CR and TD milk yield by using the Bayesian method with Gibbs sampling. The posterior means of the heritabilities of CR were 0.031 for heifers, 0.034 for first-lactation cows and 0.028 for second-lactation cows. Heritabilities for TD milk yield increased from 0.324 to 0.433 with increasing DIM but decreased slightly after 210 DIM during first lactation. These heritabilities from the second and third lactations were higher during late stages of lactation than during early stages. Posterior means of the genetic correlations between heifer CR and all TD yields were positive (range, 0.082 to 0.287), but those between CR of cows and milk yields during first or second lactation were negative (range, −0.121 to −0.250). Therefore, during every stage of lactation, selection in the direction of increasing milk yield may reduce CR in cows. The genetic relationships between CR and lactation curve shape were quite weak, because the genetic correlations between CR and TD milk yield were constant during the lactation period.
GaP, GaAs, and InP nanowires were grown on graphitic layers by the vapor-liquid-solid method in a metalorganic vapor phase epitaxy chamber. On graphene/SiC(0001), Au particles as catalyst were formed at the steps by controlling the Au deposition rate and the annealing temperature in a low-energy electron microscopy system. GaP nanowires were grown on this substrate, and it was found that vertical nanowires were formed at the steps of the surface. We also performed GaP, GaAs, and InP nanowire growth on graphite substrates. Free-standing nanowires were obtained for all three materials, although they were vertically, diagonally, and laterally-oriented at the same time. The results suggested that the growth at the steps is the key to growing nanowires vertically on graphene surface.
The dependence of phosphorus doping on crystal face and C/Si ratio in the epitaxial growth of 4H-SiC using phosphine were investigated. Phosphorus incorporation was highest on off-axis (000-1) and lowest on off-axis (0001). Phosphorus incorporation on (11-20) came between that on off-axis (0001) and (000-1). With increasing C/Si ratio from 0.5 to 2.5, phosphorus incorporation increased on (11-20) and off-axis (000-1). Phosphorus incorporation on off-axis (0001) showed unclear C/Si ratio dependence. On (000-1), the highest phosphorus concentration of 2 × 1018cm-3 was obtained by an increasing PH3 flow rate. The roughness, growth rate, and surface morphology of the high phosphorus doped epilayer were investigated.
In this study, we investigated surface features formed by molten KOH etching of (000-1) substrates and epilayers, using scanning electron microscopy (SEM) and cross-sectional transmission electron microscopy (TEM). We found the surface features formed on (000-1) are protrusions, in contrast to well-known dimples on (0001).
The effects of a neurohormone, [His7]-corazonin, on phase-related morphological traits (F/C and E/F ratios; F = length of the hind femur, C = maximum width of the head; E = length of fore wing) were re-examined in the desert locust, Schistocerca gregaria Forskål. The F/C ratio was significantly different between adults with five and six nymphal instars, respectively, indicating that they need to be analysed separately. Injections of the synthesized peptide (1 nmol) into individually-reared (solitary) nymphs at the second and third instars caused a shift in classical morphometric ratio towards the value typical for crowded (gregarious) individuals in both sexes. The E/F ratio, which is smaller in solitary locusts than in gregarious ones, was also influenced significantly by injections of [His7]-corazonin into individually-reared locusts. The effect of [His7]-corazonin on E/F ratios was shown more clearly when the nymphs were injected at a higher dose (2 nmol) at the beginning of the third instar. Single injections of the peptide into individually-reared nymphs at different instars revealed that the earlier the injection the larger the ‘gregarizing’ effects of the peptide on F/C and E/F ratios. The same tendency was also detected in Locusta migratoria Linnaeus. These results supported the hypothesis that [His7]-corazonin plays an important role in the control of phase polymorphism in locusts.
Amplification of the second internal transcribed spacer (ITS2) of ribosomal DNA was used to compare seven samples of the Tetranychus kanzawai Kishida–T. hydrangeae Pritchard & Baker mite complex from five different countries: Australia, the Congo, Indonesia, Japan and the USA. No morphological differences were detected between these mites and their ITS2 sequences displayed strong similarity except for a small nucleotide divergence of 0.2% in specimens from Australia and Indonesia. Reciprocal crosses and backcrosses between mites assumed to be T. kanzawai and T. hydrangeae respectively showed reproductive compatibility. Fertile hybrid females were obtained in all cases, indicating conspecificity of the mites tested. It is concluded that T. hydrangeae is a synonym of T. kanzawai. The evidence suggests that T. kanzawai originated in South-east Asia and probably spread throughout the world on Hydrangea spp. cuttings.
The structural and optical properties of CdS/CdTe(S) interface region of 2-μm thick CdS/CdTe solar cells have been studied in conjunction with photovoltaic performances of the solar cells. The properties are found to be crucially influenced by the annealing temperature and oxygen concentration of the CdCl2 treatment. An increase in VOC and F.F. found in the solar cells with the CdCl2 treatment at < 360°C is interpreted as due to suppression of interdiffusion of sulfur and tellurium at the CdS/CdTe(S) interface. On the other hand, the electromodulated photoluminescence with UV light excitation (UVE-EMPL) study reveals that the increasing VOC due to increasing oxygen concentration to 5% is likely to be caused by an increase in the built-in electric field in n+-CdTe1−xSx just adjacent to the CdS/CdTe(S) interface. As a result of the modification of the process parameters, we have achieved the conversion efficiency of 13.6% (VOC: 0.817V, JSC: 23.0 mA/cm2, F.F.: 0.725) using 2.3-μm thick PV active layer without anti-reflection coating.
The structural aspect of photodegradation effect in hydrogenated amorphous silicon has been investigated by the use of the simple and sensitive detection technique, the laser optical-lever bending method, for a small expansion or extraction in thin films. The volume change induced by the thermal expansion due to the photothermal effect and the residual expansion was observed in hydrogenated amorphous silicon prepared by PECVD. The latter residual expansion was persistent after light soaking and was recovered by thermal annealing at 200°C.The time dependence of the volume expansion with light soaking shows the same time dependence of photoinduced defect density. The photoinduced volume changes normalized by the initial volume are the order of 10-5~10-5, which values are two orders smaller than chalcogenide glasses such as a-As2S3. The normalized volume change of a-Si:H with the different sample preparation conditions of PECVD such as the hydrogen dilution ratio r (r = SiH4/H2) and substrate temperature is shown. Also it is demonstrated that the photoinduced expansion is observed in hydrogenated amorphous silicon prepared by photo CVD and hot-wire CVD methods. The spatial extent related to a photoinduced defect creation in a-Si:H is estimated.
Nucleotide sequence variation and morphological characters were used to study the evolutionary relationships among nine tetranychid mites species. A phylogenetic study of this family based on mitochondrial cytochrome oxidase subunit I (COI) sequences had previously placed the species Tetranychus viennensis Zacher outside the other species analysed in the genus. Phylogenetic relations within the genus were re-examined with the addition of the species Tetranychus quercivorus Ehara & Gotoh, which is morphologically close to T. viennensis. Another region of the genome, the second internal transcribed spacer (ITS2) of ribosomal DNA, was also studied and proved to be of considerable interest at this taxonomic level. Both COI and ITS2 sequences indicated a close relationship between T. viennensis and T. quercivorus, which are grouped together and distinct from the other Tetranychus examined. The two species display morphological characteristics such as the absence of a medio-dorsal spur on all empodia of the legs of both sexes and the presence of anastomosing peritremes. This distinguishes them from the other members of the genus Tetranychus. The convergence of molecular and morphological data suggests that T. viennensis and T. quercivorus should not be classified in the genus Tetranychus. It is proposed that the genus Amphitetranychus Oudemans should be restored for classification of these species. Finally, a key to the Tetranychini tribe genera with one pair of para-anal setae is presented.
Nano-crystalline GaN (nc-GaN) and hydrogenated nc-GaN (nc-GaN:H) thin films and thin film transistors (TFT) prepared by a reactive sputtering method have been studied. Hydrogen incorporation in nc-GaN film induces localized states at mid-gap energy. Thermal annealing at 400 °C and 600 °C creates mid-gap states which is detectable by electron spin resonance. Further thermal annealing treatment at 800 °C reduces the deep states in nc-GaN and nc-GaN:H. Photoluminescence spectra of the nc-GaN film have two broad peaks at 2.4 eV and 3.2 eV. The source-drain current voltage characteristics of the nc-GaN TFT is demonstrated for the first time. The obtained field effect mobility is 10−4 cm2/V-s. Thermal annealing at 800 °C improves the field effect mobility to 10−2 cm2/V-s.
Microstructures of two MPMG processed YBaCuO materials with and without Y2BaCuO5 (211) inclusions were investigated by transmission electron microscopy. Using the MPMG process, it is possible to change the quantity of the 211 inclusions in the YBa2Cu3O7 (123) matrix. We prepared two YBaCuO samples with 0 and 30 vol. % 211 and with respective critical current density values of 2000 and 30 000 A/cm2 at 77 K and 1 T (magnetic field parallel to the c-axis). As possible pinning centers, we found stacking faults in the 123 matrix. However, we observed no appreciable change in their number and structure by introducing the 211 inclusions. Therefore, the difference in Jc values can be attributed to the 211 inclusion itself.
Extremely high-sensitive image pickup tubes with sensitivities 1000 times higher than those of conventional tubes are fabricated using the avalanche phenomenon in a-Se as photoconductive targets. The excess avalanche noise of a video signal is found to be much less than that expected, based on the carrier ionization rates. The frequency spectra of the noise currents of both the pickup tubes and sandwich-type photocells are examined. The results are compared with those of a simulation, and it is found that the excess noise can be reduced by the charge-storage operation of imaging devices.
High quality ZnSe films were successfully grown on GaAs(100) at low temperatures, 200 °C or lower by Hydrogen Radical-enhanced Chemical Vapor Deposition (HRCVD). Defects were makedly eliminated by the following factors: selection of source materials; avoidance of ion bombardment; and suppression of formation of adducts by alternate gas supply. Strained-layer superlattice (SLS) consisting of ZnSe as the well and ZnS0. 1Se0.9 as the barrier was made by this technique. Emission line attributed to the free exciton was dominantly observed in the SLS.