Physically crosslinked polyvinyl alcohol (PVA) hydrogels with high mechanical properties can be made by a low temperature crystallization method using a mixed solvent of dimethyl sulfoxide (DMSO) and water. Such hydrogels are studied as the artificial articular cartilage material. But DMSO shows cytotoxycity, and it is also have the effect of accelerating the absorption of harmful substances. Therefore completely elimination must be required for clinical application but the process is difficult.
However, PVA hydrogel made by water as a sole solvent by freeze-thawing method became cloudy because of micro-heterogeneous structure, and shows low mechanical properties.
Therefore, in this study, we developed the novel hot pressing method for preparing transparent and uniformly cross-linked PVA hydrogels without DMSO from highly concentrated aqueous solution. By this method, PVA hydrogels with high mechanical property and high transparency can be obtained without any harmful organic solvent because of the fast crystallization even at room temperature. The mechanical properties of PVA hydrogels were remarkably depended on their water contents after gelation, regardless of solution concentration.