We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
We present a detailed overview of the cosmological surveys that we aim to carry out with Phase 1 of the Square Kilometre Array (SKA1) and the science that they will enable. We highlight three main surveys: a medium-deep continuum weak lensing and low-redshift spectroscopic HI galaxy survey over 5 000 deg2; a wide and deep continuum galaxy and HI intensity mapping (IM) survey over 20 000 deg2 from
$z = 0.35$
to 3; and a deep, high-redshift HI IM survey over 100 deg2 from
$z = 3$
to 6. Taken together, these surveys will achieve an array of important scientific goals: measuring the equation of state of dark energy out to
$z \sim 3$
with percent-level precision measurements of the cosmic expansion rate; constraining possible deviations from General Relativity on cosmological scales by measuring the growth rate of structure through multiple independent methods; mapping the structure of the Universe on the largest accessible scales, thus constraining fundamental properties such as isotropy, homogeneity, and non-Gaussianity; and measuring the HI density and bias out to
$z = 6$
. These surveys will also provide highly complementary clustering and weak lensing measurements that have independent systematic uncertainties to those of optical and near-infrared (NIR) surveys like Euclid, LSST, and WFIRST leading to a multitude of synergies that can improve constraints significantly beyond what optical or radio surveys can achieve on their own. This document, the 2018 Red Book, provides reference technical specifications, cosmological parameter forecasts, and an overview of relevant systematic effects for the three key surveys and will be regularly updated by the Cosmology Science Working Group in the run up to start of operations and the Key Science Programme of SKA1.
Pioneering studies of winds from non-coronal evolved late-type stars were plagued by uncertainties in the Ca ionization balance which severely limited the accuracy of derived mass-loss rates. Here we re-examine the Ca II ionization balance in these stellar winds using FUSE spectra which reveal, for the first time, the flux from the photoionizing radiation field shortward of 1045Â. We present a FUSE 912-1185Â spectroscopic survey of evolved late-K and M stars; including the M giants α Cet (M1.5 III), γ Cru (M3.5 III), β Gru (M4.5 III), and R Dor (M8e III). Using FUSE spectra of α Tau (K5 III), supplemented with partial redistribution calculations of H Ly-α and Ly-β, together with UV and radio data, we present a study of α Tau's wind ionization balance and derive new constraints which place the mass-loss rate significantly below that suggested by the Reimers formula.
Email your librarian or administrator to recommend adding this to your organisation's collection.